Rounding of polytopes in the real number model of computation

被引:174
作者
Khachiyan, LG
机构
[1] Department of Computer Science, Hill Center, Rutgers University, New Brunswick
关键词
rounding of polytopes; Lowner ellipsoid; real number model of computation; strongly polynomial algorithm;
D O I
10.1287/moor.21.2.307
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let A be a set of m points in R(n). We show that the problem of (1 + epsilon)n-rounding of A,, i.e., the problem of computing an ellipsoid E subset of or equal to R(n) such that [(1 + epsilon)n](-1)E subset of or equal to conv. hull(A) subset of or equal to E, can be solved in O(mn(2)(epsilon(-1) + In n + In In m)) arithmetic operations and comparisons. This result implies that the problem of approximating the minimum volume ellipsoid circumscribed about A can be solved in O(m(3.5) In(m epsilon(-1))) operations to a relative accuracy of epsilon in the volume. The latter bound also applies to the (1 + epsilon)n-rounding problem. Our bounds hold for the real number model of computation.
引用
收藏
页码:307 / 320
页数:14
相关论文
共 24 条
[1]  
Beckenbach E. F., 2012, Inequalities, V30
[2]   THE ELLIPSOID METHOD GENERATES DUAL VARIABLES [J].
BURRELL, BP ;
TODD, MJ .
MATHEMATICS OF OPERATIONS RESEARCH, 1985, 10 (04) :688-700
[3]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[4]  
Fedorov V., 1972, Theory of optimal experiments
[5]   VARIABLE-METRIC RELAXATION METHODS .2. THE ELLIPSOID METHOD [J].
GOFFIN, JL .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :147-162
[6]   THE ELLIPSOID METHOD AND ITS CONSEQUENCES IN COMBINATORIAL OPTIMIZATION [J].
GROTSCHEL, M ;
LOVASZ, L ;
SCHRIJVER, A .
COMBINATORICA, 1981, 1 (02) :169-197
[7]  
Grotschel M., 1988, GEOMETRIC ALGORITHMS
[8]  
John F., 2014, STUDIEESSAYPRESE, P197, DOI [10.1007/978-3-0348-0439-4_9.h5i, DOI 10.1007/978-3-0348-0439-4_9.H5I]
[9]   ON THE COMPLEXITY OF APPROXIMATING THE MAXIMAL INSCRIBED ELLIPSOID FOR A POLYTOPE [J].
KHACHIYAN, LG ;
TODD, MJ .
MATHEMATICAL PROGRAMMING, 1993, 61 (02) :137-159
[10]  
Kiefer J, 1960, Canadian Journal of Mathematics, V12, P363, DOI [DOI 10.4153/CJM-1960-030-4, 10.4153/CJM-1960-030-4]