Covalent strategy for immobilization of DNA-microspots suitable for microarrays with label-free and time-resolved optical detection of hybridization

被引:28
作者
Jung, A
Stemmler, I
Brecht, A
Gauglitz, G
机构
[1] Univ Tubingen, Inst Phys & Theoret Chem, D-72076 Tubingen, Germany
[2] Cyt SA Biopole, CH-1066 Epalinges, Switzerland
来源
FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY | 2001年 / 371卷 / 02期
关键词
D O I
10.1007/s002160101001
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Sequence-specific detection and quantification of nucleic acids are central steps in many molecular biology procedures which have also been transferred to chip-based procedures. Hybridization-based assays can be used to quantify and discriminate between DNA target sequences down to the level of single base mismatches. Arrays of DNA probes immobilized on a support enable simultaneous testing of multiple sequences of a single sample. DNA arrays can be produced either by in-situ synthesis of oligonucleotides or by immobilization of pre-assembled DNA probes. Covalent and directed immobilization improves the reproducibility and stability of DNA arrays. This is especially interesting with repeated use of transducers or chips. Procedures are described for effective covalent immobilization of pre-assembled amino-linked oligonucleotides, by use of ink-jet techniques, on a modified and heated glass surface, with addressable surface areas ranging from 0.01 mm(2) to a few mm(2). Almost immediate evaporation of the spotted droplets on the heated surfaces leads to very high surface hybridization capacities. The surfaces are suitable for use with a label-free detection method - reflectometric interference spectroscopy (RUS). It is shown that hybridization capacity and non-specific interaction at these DNA-surfaces can be characterized by use of RUS. With a consumption of less than 80 ng.mm(-2) oligonucleotide and a specific hybridization capacity of more than 300 fmol mm(-2), the activated aminodextran procedure was usually suitable for setting up a DNA array with label-free detection. Non-specific interactions with random oligomers or protein (ovalbumin) were low. Up to 150 repeated regenerations (stripping) of the surfaces by acid treatment and denaturing agents, and 50 days of storage, have been possible without significant loss of hybridization capacity.
引用
收藏
页码:128 / 136
页数:9
相关论文
共 35 条
[1]   Versatile derivatisation of solid support media for covalent bonding on DNA-microchips [J].
Beier, M ;
Hoheisel, JD .
NUCLEIC ACIDS RESEARCH, 1999, 27 (09) :1970-1977
[2]   High-density oligonucleotide arrays [J].
Blanchard, AP ;
Kaiser, RJ ;
Hood, LE .
BIOSENSORS & BIOELECTRONICS, 1996, 11 (6-7) :687-690
[3]   New developments in microarray technology [J].
Blohm, DH ;
Guiseppi-Elie, A .
CURRENT OPINION IN BIOTECHNOLOGY, 2001, 12 (01) :41-47
[4]   An integrated nanoliter DNA analysis device [J].
Burns, MA ;
Johnson, BN ;
Brahmasandra, SN ;
Handique, K ;
Webster, JR ;
Krishnan, M ;
Sammarco, TS ;
Man, PM ;
Jones, D ;
Heldsinger, D ;
Mastrangelo, CH ;
Burke, DT .
SCIENCE, 1998, 282 (5388) :484-487
[5]   Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development [J].
Caruso, F ;
Rodda, E ;
Furlong, DF ;
Niikura, K ;
Okahata, Y .
ANALYTICAL CHEMISTRY, 1997, 69 (11) :2043-2049
[6]   Covalent attachment of synthetic DNA to self-assembled monolayer films [J].
Chrisey, LA ;
Lee, GU ;
OFerrall, CE .
NUCLEIC ACIDS RESEARCH, 1996, 24 (15) :3031-3039
[7]   Fabrication of patterned DNA surfaces [J].
Chrisey, LA ;
OFerrall, CE ;
Spargo, BJ ;
Dulcey, CS ;
Calvert, JM .
NUCLEIC ACIDS RESEARCH, 1996, 24 (15) :3040-3047
[8]   SEQUENCING BY HYBRIDIZATION - TOWARDS AN AUTOMATED SEQUENCING OF ONE MILLION M13 CLONES ARRAYED ON MEMBRANES [J].
DRMANAC, R ;
DRMANAC, S ;
LABAT, I ;
CRKVENJAKOV, R ;
VICENTIC, A ;
GEMMELL, A .
ELECTROPHORESIS, 1992, 13 (08) :566-573
[9]   CHEMICAL AND BIOCHEMICAL SENSORS BASED ON INTERFEROMETRY AT THIN (MULTI-)LAYERS [J].
GAUGLITZ, G ;
BRECHT, A ;
KRAUS, G ;
NAHM, W .
SENSORS AND ACTUATORS B-CHEMICAL, 1993, 11 (1-3) :21-27
[10]   Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays [J].
Gingeras, TR ;
Ghandour, G ;
Wang, EG ;
Berno, A ;
Small, PM ;
Drobniewski, F ;
Alland, D ;
Desmond, E ;
Holodniy, M ;
Drenkow, J .
GENOME RESEARCH, 1998, 8 (05) :435-448