Molecular mechanisms of kinetochore capture by spindle microtubules

被引:221
作者
Tanaka, K [1 ]
Mukae, N
Dewar, H
van Breugel, M
James, EK
Prescott, AR
Antony, C
Tanaka, TU
机构
[1] Univ Dundee, Sch Life Sci, Wellcome Trust Bioctr, Dundee DD1 5EH, Scotland
[2] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[3] European Mol Biol Lab, D-69117 Heidelberg, Germany
基金
英国惠康基金;
关键词
D O I
10.1038/nature03483
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For high-fidelity chromosome segregation, kinetochores must be properly captured by spindle microtubules, but the mechanisms underlying initial kinetochore capture have remained elusive. Here we visualized individual kinetochore-microtubule interactions in Saccharomyces cerevisiae by regulating the activity of a centromere. Kinetochores are captured by the side of microtubules extending from spindle poles, and are subsequently transported poleward along them. The microtubule extension from spindle poles requires microtubule plus-end-tracking proteins and the Ran GDP/GTP exchange factor. Distinct kinetochore components are used for kinetochore capture by microtubules and for ensuring subsequent sister kinetochore bi-orientation on the spindle. Kar3, a kinesin-14 family member, is one of the regulators that promote transport of captured kinetochores along microtubules. During such transport, kinetochores ensure that they do not slide off their associated microtubules by facilitating the conversion of microtubule dynamics from shrinkage to growth at the plus ends. This conversion is promoted by the transport of Stu2 from the captured kinetochores to the plus ends of microtubules.
引用
收藏
页码:987 / 994
页数:8
相关论文
共 50 条
[1]   Spindle pole body duplication: a model for centrosome duplication? [J].
Adams, IR ;
Kilmartin, JV .
TRENDS IN CELL BIOLOGY, 2000, 10 (08) :329-335
[2]   Microtubule plus-end-tracking proteins: mechanisms and functions [J].
Akhmanova, A ;
Hoogenraad, CC .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (01) :47-54
[3]   CHROMOSOME MOTION DURING ATTACHMENT TO THE VERTEBRATE SPINDLE - INITIAL SALTATORY-LIKE BEHAVIOR OF CHROMOSOMES AND QUANTITATIVE-ANALYSIS OF FORCE PRODUCTION BY NASCENT KINETOCHORE FIBERS [J].
ALEXANDER, SP ;
RIEDER, CL .
JOURNAL OF CELL BIOLOGY, 1991, 113 (04) :805-815
[4]   The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast [J].
Biggins, S ;
Severin, FF ;
Bhalla, N ;
Sassoon, I ;
Hyman, AA ;
Murray, AW .
GENES & DEVELOPMENT, 1999, 13 (05) :532-544
[5]   Long-range communication between chromatin and microtubules in Xenopus egg extracts [J].
Carazo-Salas, RE ;
Karsenti, E .
CURRENT BIOLOGY, 2003, 13 (19) :1728-1733
[6]   Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly [J].
Carazo-Salas, RE ;
Gruss, OJ ;
Mattaj, IW ;
Karsenti, E .
NATURE CELL BIOLOGY, 2001, 3 (03) :228-234
[7]   Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation [J].
Carvalho, P ;
Gupta, ML ;
Hoyt, MA ;
Pellman, D .
DEVELOPMENTAL CELL, 2004, 6 (06) :815-829
[8]   Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex [J].
Cheeseman, IM ;
Enquist-Newman, M ;
Müller-Reichert, T ;
Drubin, DG ;
Barnes, G .
JOURNAL OF CELL BIOLOGY, 2001, 152 (01) :197-212
[9]   Phospho-regulation of kinetochore-microtubule attachments by the aurora kinase Ipl1p [J].
Cheeseman, LM ;
Anderson, S ;
Jwa, M ;
Green, EM ;
Kang, JS ;
Yates, JR ;
Chan, CSM ;
Drubin, DG ;
Barnes, G .
CELL, 2002, 111 (02) :163-172
[10]   Nucleocytoplasmic transport of macromolecules [J].
Corbett, AH ;
Silver, PA .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1997, 61 (02) :193-+