Triple-Mode Single-Transistor Graphene Amplifier and Its Applications

被引:155
作者
Yang, Xuebei [1 ]
Liu, Guanxiong [2 ,3 ]
Balandin, Alexander A. [2 ,3 ]
Mohanram, Kartik [1 ,4 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Univ Calif Riverside, Bourns Coll Engn, Dept Elect Engn, Nanodevice Lab, Riverside, CA 92521 USA
[3] Univ Calif Riverside, Bourns Coll Engn, Mat Sci & Engn Program, Riverside, CA 92521 USA
[4] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
关键词
graphene; transistor; ambipolar; triple-mode amplifier; phase shift keying; frequency shift keying; FIELD-EFFECT TRANSISTORS; LAYER GRAPHENE; OPERATION; NOISE;
D O I
10.1021/nn1021583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We propose and experimentally demonstrate a triple-mode single-transistor graphene amplifier utilizing a three-terminal back-gated single-layer graphene transistor. The ambipolar nature of electronic transport in graphene transistors leads to increased amplifier functionality as compared to amplifiers built with unipolar semiconductor devices. The ambipolar graphene transistors can be configured as n-type, p-type, or hybrid-type by changing the gate bias. As a result, the single-transistor graphene amplifier can operate in the common-source, common-drain, or frequency multiplication mode, respectively. This in-field controllability of the single-transistor graphene amplifier can be used to realize the modulation necessary for phase shift keying and frequency shift keying, which are widely used in wireless applications. It also offers new opportunities for designing analog circuits with simpler structure and higher integration densities for communications applications.
引用
收藏
页码:5532 / 5538
页数:7
相关论文
共 27 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices [J].
Calizo, I. ;
Miao, F. ;
Bao, W. ;
Lau, C. N. ;
Balandin, A. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (07)
[4]   The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass [J].
Calizo, Irene ;
Bao, Wenzhong ;
Miao, Feng ;
Lau, Chun Ning ;
Balandin, Alexander A. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[5]   ORGANIC HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS [J].
DODABALAPUR, A ;
KATZ, HE ;
TORSI, L ;
HADDON, RC .
SCIENCE, 1995, 269 (5230) :1560-1562
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
[9]   A polarity-controllable graphene inverter [J].
Harada, Naoki ;
Yagi, Katsunori ;
Sato, Shintaro ;
Yokoyama, Naoki .
APPLIED PHYSICS LETTERS, 2010, 96 (01)
[10]   Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors [J].
Heinze, S ;
Radosavljevic, M ;
Tersoff, J ;
Avouris, P .
PHYSICAL REVIEW B, 2003, 68 (23)