Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy

被引:140
作者
Jerng, Sahng-Kyoon [1 ,2 ]
Yu, Dong Seong [1 ,2 ]
Lee, Jae Hong [1 ,2 ]
Kim, Christine [3 ]
Yoon, Seokhyun [3 ]
Chun, Seung-Hyun [1 ,2 ]
机构
[1] Sejong Univ, Dept Phys, Seoul 143747, South Korea
[2] Sejong Univ, Graphene Res Inst, Seoul 143747, South Korea
[3] Ewha Womans Univ, Dept Phys, Seoul 151747, South Korea
来源
NANOSCALE RESEARCH LETTERS | 2011年 / 6卷
基金
新加坡国家研究基金会;
关键词
graphite; molecular beam epitaxy; Raman; oxide; RAMAN-SPECTROSCOPY; GRAPHENE;
D O I
10.1186/1556-276X-6-565
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We report graphitic carbon growth on crystalline and amorphous oxide substrates by using carbon molecular beam epitaxy. The films are characterized by Raman spectroscopy and X-ray photoelectron spectroscopy. The formations of nanocrystalline graphite are observed on silicon dioxide and glass, while mainly sp(2) amorphous carbons are formed on strontium titanate and yttria-stabilized zirconia. Interestingly, flat carbon layers with high degree of graphitization are formed even on amorphous oxides. Our results provide a progress toward direct graphene growth on oxide materials.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 14 条
[1]   Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation [J].
Al-Temimy, A. ;
Riedl, C. ;
Starke, U. .
APPLIED PHYSICS LETTERS, 2009, 95 (23)
[2]   Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size [J].
Cancado, L. G. ;
Jorio, A. ;
Pimenta, M. A. .
PHYSICAL REVIEW B, 2007, 76 (06)
[3]   XPS, Raman spectroscopy, X-ray diffraction, specular X-ray reflectivity, transmission electron microscopy and elastic recoil detection analysis of emissive carbon film characterization [J].
Ermolieff, A ;
Chabli, A ;
Pierre, F ;
Rolland, G ;
Rouchon, D ;
Vannuffel, C ;
Vergnaud, C ;
Baylet, J ;
Séméria, MN .
SURFACE AND INTERFACE ANALYSIS, 2001, 31 (03) :185-190
[4]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[5]   Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 64 (07)
[6]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[7]   Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy [J].
Hackley, J. ;
Ali, D. ;
DiPasquale, J. ;
Demaree, J. D. ;
Richardson, C. J. K. .
APPLIED PHYSICS LETTERS, 2009, 95 (13)
[8]   Nanocrystalline Graphite Growth on Sapphire by Carbon Molecular Beam Epitaxy [J].
Jerng, S. K. ;
Yu, D. S. ;
Kim, Y. S. ;
Ryou, Junga ;
Hong, Suklyun ;
Kim, C. ;
Yoon, S. ;
Efetov, D. K. ;
Kim, P. ;
Chun, S. H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (11) :4491-4494
[9]   Hafnia nanoparticles - a model system for graphene growth on a dielectric [J].
Kidambi, Piran R. ;
Bayer, Bernhard C. ;
Weatherup, Robert S. ;
Ochs, Rolf ;
Ducati, Caterina ;
Szabo, D. Vinga ;
Hofmann, Stephan .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (09) :341-343
[10]   Thin Graphitic Structure Formation on Various Substrates by Gas-Source Molecular Beam Epitaxy Using Cracked Ethanol [J].
Maeda, Fumihiko ;
Hibino, Hiroki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (04)