Microfluidic stretchable RF electronics

被引:153
作者
Cheng, Shi [1 ]
Wu, Zhigang [1 ]
机构
[1] Uppsala Univ, Dept Engn Sci, Angstrom Lab, SE-75121 Uppsala, Sweden
关键词
INTEGRATED-CIRCUITS; POLY(DIMETHYLSILOXANE); INTERCONNECTS; FABRICATION; CONDUCTORS; SYSTEMS; DESIGN;
D O I
10.1039/c005159d
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e. g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.
引用
收藏
页码:3227 / 3234
页数:8
相关论文
共 31 条
[1]   Materials and Applications for Large Area Electronics: Solution-Based Approaches [J].
Arias, Ana Claudia ;
MacKenzie, J. Devin ;
McCulloch, Iain ;
Rivnay, Jonathan ;
Salleo, Alberto .
CHEMICAL REVIEWS, 2010, 110 (01) :3-24
[2]   Semiconductor wires and ribbons for high-performance flexible electronics [J].
Baca, Alfred J. ;
Ahn, Jong-Hyun ;
Sun, Yugang ;
Meitl, Matthew A. ;
Menard, Etienne ;
Kim, Hoon-Sik ;
Choi, Won Mook ;
Kim, Dae-Hyeong ;
Huang, Young ;
Rogers, John A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (30) :5524-5542
[3]   Design and fabrication of elastic interconnections for stretchable electronic circuits [J].
Brosteaux, Dominique ;
Axisa, Fabrice ;
Gonzalez, Mario ;
Vanfleteren, Jan .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (07) :552-554
[4]   Design and implementation of advanced systems in a flexible-stretchable technology for biomedical applications [J].
Carta, R. ;
Jourand, P. ;
Hermans, B. ;
Thone, J. ;
Brosteaux, D. ;
Vervust, T. ;
Bossuyt, F. ;
Axisa, F. ;
Vanfleteren, J. ;
Puers, R. .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 156 (01) :79-87
[5]   Foldable and Stretchable Liquid Metal Planar Inverted Cone Antenna [J].
Cheng, Shi ;
Wu, Zhigang ;
Hallbjorner, Paul ;
Hjort, Klas ;
Rydberg, Anders .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (12) :3765-3771
[6]   Liquid metal stretchable unbalanced loop antenna [J].
Cheng, Shi ;
Rydberg, Anders ;
Hjort, Klas ;
Wu, Zhigang .
APPLIED PHYSICS LETTERS, 2009, 94 (14)
[7]   Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature [J].
Dickey, Michael D. ;
Chiechi, Ryan C. ;
Larsen, Ryan J. ;
Weiss, Emily A. ;
Weitz, David A. ;
Whitesides, George M. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1097-1104
[8]  
Disttrich P. S., 2006, NAT REV DRUG DISCOV, V5, P210
[9]   Cells on chips [J].
El-Ali, Jamil ;
Sorger, Peter K. ;
Jensen, Klavs F. .
NATURE, 2006, 442 (7101) :403-411
[10]   Wearable and portable eHealth systems [J].
Gatzoulis, Loukianos ;
Iakovidis, Ilias .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2007, 26 (05) :51-56