Identification of functional SNPs in the 5-prime flanking sequences of human genes -: art. no. 18

被引:37
作者
Mottagui-Tabar, S [1 ]
Faghihi, MA
Mizuno, Y
Engström, PG
Lenhard, B
Wasserman, WW
Wahlestedt, C
机构
[1] Karolinska Inst, Ctr Genom & Bioinformat, SE-17177 Stockholm, Sweden
[2] Univ British Columbia, Ctr Mol Med & Therapeut, Vancouver, BC V5Z 4H4, Canada
关键词
D O I
10.1186/1471-2164-6-18
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Over 4 million single nucleotide polymorphisms ( SNPs) are currently reported to exist within the human genome. Only a small fraction of these SNPs alter gene function or expression, and therefore might be associated with a cell phenotype. These functional SNPs are consequently important in understanding human health. Information related to functional SNPs in candidate disease genes is critical for cost effective genetic association studies, which attempt to understand the genetics of complex diseases like diabetes, Alzheimer's, etc. Robust methods for the identification of functional SNPs are therefore crucial. We report one such experimental approach. Results: Sequence conserved between mouse and human genomes, within 5 kilobases of the 5-prime end of 176 GPCR genes, were screened for SNPs. Sequences flanking these SNPs were scored for transcription factor binding sites. Allelic pairs resulting in a significant score difference were predicted to influence the binding of transcription factors (TFs). Ten such SNPs were selected for mobility shift assays ( EMSA), resulting in 7 of them exhibiting a reproducible shift. The full-length promoter regions with 4 of the 7 SNPs were cloned in a Luciferase based plasmid reporter system. Two out of the 4 SNPs exhibited differential promoter activity in several human cell lines. Conclusions: We propose a method for effective selection of functional, regulatory SNPs that are located in evolutionary conserved 5-prime flanking regions (5'-FR) regions of human genes and influence the activity of the transcriptional regulatory region. Some SNPs behave differently in different cell types.
引用
收藏
页数:9
相关论文
共 33 条
[1]   HGBASE:: a database of SNPs and other variations in and around human genes [J].
Brookes, AJ ;
Lehväslaiho, H ;
Siegfried, M ;
Boehm, JG ;
Yuan, YP ;
Sarkar, CM ;
Bork, P ;
Ortigao, F .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :356-360
[2]   Characterization of single-nucleotide polymorphisms in coding regions of human genes [J].
Cargill, M ;
Altshuler, D ;
Ireland, J ;
Sklar, P ;
Ardlie, K ;
Patil, N ;
Lane, CR ;
Lim, EP ;
Kalyanaraman, N ;
Nemesh, J ;
Ziaugra, L ;
Friedland, L ;
Rolfe, A ;
Warrington, J ;
Lipshutz, R ;
Daley, GQ ;
Lander, ES .
NATURE GENETICS, 1999, 22 (03) :231-238
[3]   Predicting the functional consequences of non-synonymous single nucleotide polymorphisms: Structure-based assessment of amino acid variation [J].
Chasman, D ;
Adams, RM .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 307 (02) :683-706
[4]   Searching for regulatory elements in human noncoding sequences [J].
Duret, L ;
Bucher, P .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (03) :399-406
[5]  
Fickett JW, 1998, METHOD BIOCHEM ANAL, V39, P231
[6]  
Fickett JW, 1996, MOL CELL BIOL, V16, P437
[7]  
HUBBARD T, 2005, NUCL ACIDS RES, V33
[8]   Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients [J].
Jormsjö, S ;
Whatling, C ;
Walter, DH ;
Zeiher, AM ;
Hamsten, A ;
Eriksson, P .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2001, 21 (11) :1834-1839
[9]   The UCSC Genome Browser Database [J].
Karolchik, D ;
Baertsch, R ;
Diekhans, M ;
Furey, TS ;
Hinrichs, A ;
Lu, YT ;
Roskin, KM ;
Schwartz, M ;
Sugnet, CW ;
Thomas, DJ ;
Weber, RJ ;
Haussler, D ;
Kent, WJ .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :51-54
[10]  
Kent WJ, 2002, GENOME RES, V12, P656, DOI [10.1101/gr.229202, 10.1101/gr.229202. Article published online before March 2002]