Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections

被引:104
作者
Lindgren, PK
Marcusson, LL
Sandvang, D
Frimodt-Moller, N
Hughes, D
机构
[1] Uppsala Univ, Dept Cell & Mol Biol, Biomed Ctr, S-75124 Uppsala, Sweden
[2] Statens Serum Inst, Dept Microbiol R&D, Div Microbiol, DK-2300 Copenhagen, Denmark
关键词
D O I
10.1128/AAC.49.6.2343-2351.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Resistance to fluoroquinolones in urinary tract infection (UTIs) caused by Escherichia coli is associated with multiple mutations, typically those that alter DNA gyrase and DNA topoisomerase IV and those that regulate AcrAB-ToIC-mediated efflux. We asked whether a fitness cost is associated with the accumulation of these multiple mutations. Mutants of the susceptible E. coli UTI isolate Nu14 were selected through three to five successive steps with norfloxacin. Each selection was performed with the MIC of the selected strain. After each selection the MIC was measured; and the regions of gyrA, gyrB, parC, and parE, previously associated with resistance mutations, and all of marOR and acrR were sequenced. The first selection step yielded mutations in gyrA, gyrB, and marOR. Subsequent selection steps yielded mutations in gyrA, parE, and marOR but not in gyrB, parC, or acrR. Resistance-associated mutations were identified in almost all isolates after selection steps 1 and 2 but in less than 50% of isolates after subsequent selection steps. Selected strains were competed in vitro, in urine, and in a mouse UTI infection model against the starting strain, Nu14. First-step mutations were not associated with significant fitness costs. However, the accumulation of three or more resistance-associated mutations was usually associated with a large reduction in biological fitness, both in vitro and in vivo. Interestingly, in some lineages a partial restoration of fitness was associated with the accumulation of additional mutations in late selection steps. We suggest that the relative biological costs of multiple mutations may influence the evolution of E. coli strains that develop resistance to fluoroquinolones.
引用
收藏
页码:2343 / 2351
页数:9
相关论文
共 41 条
[1]   Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon [J].
Alekshun, MN ;
Levy, SB .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (10) :2067-2075
[2]   The mar regulon:: multiple resistance to antibiotics and other toxic chemicals [J].
Alekshun, MN ;
Levy, SB .
TRENDS IN MICROBIOLOGY, 1999, 7 (10) :410-413
[3]  
Baquero F, 1997, J CHEMOTHERAPY, V9, P29
[4]  
Baquero F, 2001, ANTIBIOTIC DEV RESIS, P117
[5]   Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance [J].
Björkman, J ;
Nagaev, I ;
Berg, OG ;
Hughes, D ;
Andersson, DI .
SCIENCE, 2000, 287 (5457) :1479-1482
[6]   Virulence of antibiotic-resistant Salmonella typhimurium [J].
Björkman, J ;
Hughes, D ;
Andersson, DI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3949-3953
[7]   Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV [J].
Breines, DM ;
Ouabdesselam, S ;
Ng, EY ;
Tankovic, J ;
Shah, S ;
Soussy, CJ ;
Hooper, DC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1997, 41 (01) :175-179
[8]   Rapid and simple determination of the Escherichia coli phylogenetic group [J].
Clermont, O ;
Bonacorsi, S ;
Bingen, E .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (10) :4555-4558
[9]  
Eden C S, 1981, Ciba Found Symp, V80, P161
[10]   Acute uncomplicated urinary tract infection in women [J].
Fihn, SD .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 349 (03) :259-266