Quantum entanglement between an optical photon and a solid-state spin qubit

被引:989
作者
Togan, E. [1 ]
Chu, Y. [1 ]
Trifonov, A. S. [1 ]
Jiang, L. [1 ,2 ,3 ]
Maze, J. [1 ]
Childress, L. [1 ,4 ]
Dutt, M. V. G. [1 ,5 ]
Sorensen, A. S. [6 ]
Hemmer, P. R. [7 ]
Zibrov, A. S. [1 ]
Lukin, M. D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[4] Bates Coll, Dept Phys & Astron, Lewiston, ME 04240 USA
[5] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[6] Univ Copenhagen, Niels Bohr Inst, QUANTOP, DK-2100 Copenhagen, Denmark
[7] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
SINGLE-PHOTON; ATOMIC ENSEMBLES; DIAMOND; EXCITATION; INTERFACE; VIOLATION; MATTER; LIGHT;
D O I
10.1038/nature09256
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum entanglement is among the most fascinating aspects of quantum theory(1). Entangled optical photons are now widely used for fundamental tests of quantum mechanics(2) and applications such as quantum cryptography(1). Several recent experiments demonstrated entanglement of optical photons with trapped ions(3), atoms(4,5) and atomic ensembles(6-8), which are then used to connect remote long-term memory nodes in distributed quantum networks(9-11). Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique(5,12), and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks(13,14).
引用
收藏
页码:730 / U4
页数:6
相关论文
共 30 条
[1]   Violation of Bell's inequality in Josephson phase qubits [J].
Ansmann, Markus ;
Wang, H. ;
Bialczak, Radoslaw C. ;
Hofheinz, Max ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Weides, M. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2009, 461 (7263) :504-506
[2]   EXPERIMENTAL REALIZATION OF EINSTEIN-PODOLSKY-ROSEN-BOHM GEDANKENEXPERIMENT - A NEW VIOLATION OF BELL INEQUALITIES [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :91-94
[3]  
Balasubramanian G, 2009, NAT MATER, V8, P383, DOI [10.1038/nmat2420, 10.1038/NMAT2420]
[4]   Observation of entanglement between a single trapped atom and a single photon [J].
Blinov, BB ;
Moehring, DL ;
Duan, LM ;
Monroe, C .
NATURE, 2004, 428 (6979) :153-157
[5]   Creation of entangled states of distant atoms by interference [J].
Cabrillo, C ;
Cirac, JI ;
García-Fernández, P ;
Zoller, P .
PHYSICAL REVIEW A, 1999, 59 (02) :1025-1033
[6]   Fault-tolerant quantum communication based on solid-state photon emitters [J].
Childress, L ;
Taylor, JM ;
Sorensen, AS ;
Lukin, MD .
PHYSICAL REVIEW LETTERS, 2006, 96 (07) :1-4
[7]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832
[8]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[9]   A solid-state light-matter interface at the single-photon level [J].
de Riedmatten, Hugues ;
Afzelius, Mikael ;
Staudt, Matthias U. ;
Simon, Christoph ;
Gisin, Nicolas .
NATURE, 2008, 456 (7223) :773-777
[10]   Demonstration of two-qubit algorithms with a superconducting quantum processor [J].
DiCarlo, L. ;
Chow, J. M. ;
Gambetta, J. M. ;
Bishop, Lev S. ;
Johnson, B. R. ;
Schuster, D. I. ;
Majer, J. ;
Blais, A. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2009, 460 (7252) :240-244