The miRNA pathway intrinsically controls self-renewal of Drosophila germline stem cells

被引:144
作者
Park, Joseph K.
Liu, Xiang
Strauss, Tamara J.
McKearin, Dennis M.
Liu, Qinghua
机构
[1] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Biol Mol, Dallas, TX 75390 USA
关键词
D O I
10.1016/j.cub.2007.01.060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Stem cells uniquely self-renew and maintain tissue homoeostasis by differentiating into different cell types to replace aged or damaged cells [1]. During oogenesis of Drosophila melanogaster, self-renewal of germline stem cells (GSCs) requires both intrinsic signaling mechanisms and extrinsic signals from neighboring niche cells [2]. Emerging evidence suggests that microRNA (miRNA)-mediated translational regulation may also control Drosophila GSC self-renewal [3,4]. It is unclear, however, whether the miRNA pathway functions within stem cells or niche cells to maintain GSCs. In Drosophila, Dicer-1 (Dcr-1) and the double-stranded RNA binding protein Loquacious (Loqs) catalyze miRNA biogenesis [3-5]. Here, we generate loqs knockout (loqs(KO)) flies by ends-out homologous recombination and show that loqs is essential for embryonic viability and ovarian GSC maintenance. Both developmental and miRNA processing defects are rescued by transgenic expression of Loqs-PB, but not Loqs-PA. Furthermore, mosaic germline analysis indicates that Loqs is required intrinsically for GSC maintenance. Consistently, GSCs are restored in loqs mutant ovaries by germline expression, but not somatic expression, of Loqs-PB. Together, these results demonstrate that Loqs-PB, but not Loqs-PA, is necessary and sufficent for Drosophila development and the miRNA pathway. Our study strongly suggests that miRNAs play an intrinsic, but not extrinsic, role in Drosophila female GSC self-renewal.
引用
收藏
页码:533 / 538
页数:6
相关论文
共 25 条
[1]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   Expression pattern of Gal4 enhancer trap insertions into the bric a brac locus generated by P element replacement [J].
Cabrera, GR ;
Godt, D ;
Fang, PY ;
Couderc, JL ;
Laski, FA .
GENESIS, 2002, 34 (1-2) :62-65
[4]   Gene circuitry controlling a stem cell niche [J].
Chen, DH ;
McKearin, D .
CURRENT BIOLOGY, 2005, 15 (02) :179-184
[5]   A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell [J].
Chen, DH ;
McKearin, DM .
DEVELOPMENT, 2003, 130 (06) :1159-1170
[6]  
CHOU TB, 1993, DEVELOPMENT, V119, P1359
[7]  
Forbes A, 1998, DEVELOPMENT, V125, P679
[8]   Normal microRNA maturation and germ-line stem cell maintenance requires loquacious, a double-stranded RNA-binding domain protein [J].
Förstemann, K ;
Tomari, Y ;
Du, TT ;
Vagin, VV ;
Denli, AM ;
Bratu, DP ;
Klattenhoff, C ;
Theurkauf, WE ;
Zamore, PD .
PLOS BIOLOGY, 2005, 3 (07) :1187-1201
[9]   Ends-out, or replacement, gene targeting in Drosphila [J].
Gong, WJ ;
Golic, KG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) :2556-2561
[10]   Stem cell division is regulated by the microRNA pathway [J].
Hatfield, SD ;
Shcherbata, HR ;
Fischer, KA ;
Nakahara, K ;
Carthew, RW ;
Ruohola-Baker, H .
NATURE, 2005, 435 (7044) :974-978