c-Myc-mediated regulation of telomerase activity is disabled in immortalized cells

被引:26
作者
Drissi, R
Zindy, F
Roussel, MF
Cleveland, JL
机构
[1] St Jude Childrens Res Hosp, Dept Biochem, Memphis, TN 38105 USA
[2] St Jude Childrens Res Hosp, Dept Tumor Cell Biol, Memphis, TN 38105 USA
关键词
D O I
10.1074/jbc.M101899200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Myc overexpression is a hallmark of human cancer and promotes transformation by facilitating immortalization. This function has been linked to the ability of c-Myc to induce the expression of the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), as ectopic expression of TERT immortalizes some primary human cell types. c-Myc up-regulates telomerase activity in primary mouse embryonic fibroblasts (MEFs) and myeloid cells. Paradoxically, Myc overexpression also triggers the ARF-p53 apoptotic program, which is activated when MEFs undergo replicative crises following culture ex vivo. The rare immortal variants that arise from these cultures generally suffer mutations in p53 or delete Ink4a/ARF, and Myc greatly increases the frequency of these events. Alternative reading frame (ARF)- and p53-null MEFs have increased telomerase activity, as do variant immortal clones that bypass replicative crisis. Similarly, immortal murine NIH-3T3 fibroblasts and myeloid 32D.3 and FDC-P1.2 cells do not express ARF and have robust telomerase activity. However Myc overexpression in these immortal cells results ever, I in remarkably discordant regulation of TERT and telomerase activity. Furthermore, in MEFs and 32D.3 cells TERT expression and telomerase activity are regulated independently of endogenous c-Myc. Thus, the regulation of TERT and telomerase activity is complex and is also regulated by factors other than Myc, ARF, or p53.
引用
收藏
页码:29994 / 30001
页数:8
相关论文
共 59 条
[1]   A critical role for telomeres in suppressing and facilitating carcinogenesis [J].
Artandi, SE ;
DePinho, RA .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2000, 10 (01) :39-46
[2]  
ASKEW DS, 1991, ONCOGENE, V6, P1915
[3]   STRUCTURE AND FUNCTION OF TELOMERES [J].
BLACKBURN, EH .
NATURE, 1991, 350 (6319) :569-573
[4]  
Blasco Maria A., 1999, Genes and Development, V13, P2353, DOI 10.1101/gad.13.18.2353
[5]   Extension of life-span by introduction of telomerase into normal human cells [J].
Bodnar, AG ;
Ouellette, M ;
Frolkis, M ;
Holt, SE ;
Chiu, CP ;
Morin, GB ;
Harley, CB ;
Shay, JW ;
Lichtsteiner, S ;
Wright, WE .
SCIENCE, 1998, 279 (5349) :349-352
[6]   Proteins that bind to double-stranded regions of telomeric DNA [J].
Brun, C ;
Marcand, S ;
Gilson, E .
TRENDS IN CELL BIOLOGY, 1997, 7 (08) :317-324
[7]  
Campisi Judith, 1996, P121
[8]   TYROSINE KINASE ONCOGENES ABROGATE INTERLEUKIN-3 DEPENDENCE OF MURINE MYELOID CELLS THROUGH SIGNALING PATHWAYS INVOLVING C-MYC - CONDITIONAL REGULATION OF C-MYC TRANSCRIPTION BY TEMPERATURE-SENSITIVE V-ABL [J].
CLEVELAND, JL ;
DEAN, M ;
ROSENBERG, N ;
WANG, JYJ ;
RAPP, UR .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (12) :5685-5695
[9]   Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion [J].
Coller, HA ;
Grandori, C ;
Tamayo, P ;
Colbert, T ;
Lander, ES ;
Eisenman, RN ;
Golub, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3260-3265
[10]  
Dexter T M, 1976, Methods Cell Biol, V14, P387, DOI 10.1016/S0091-679X(08)60498-7