Formation of magnetite by bacteria and its application

被引:177
作者
Arakaki, Atsushi [1 ]
Nakazawa, Hidekazu [1 ]
Nemoto, Michiko [1 ]
Mori, Tetsushi [1 ]
Matsunaga, Tadashi [1 ]
机构
[1] Tokyo Univ Agr & Technol, Dept Biotechnol, Koganei, Tokyo 1848588, Japan
关键词
magnetotactic bacteria; bacterial magnetic particles; surface modi. cation of magnetite; magnetic separation; protein display; fully automated system;
D O I
10.1098/rsif.2008.0170
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic particles offer high technological potential since they can be conveniently collected with an external magnetic field. Magnetotactic bacteria synthesize bacterial magnetic particles (BacMPs) with well-controlled size and morphology. BacMPs are individually covered with thin organic membrane, which confers high and even dispersion in aqueous solutions compared with artificial magnetites, making them ideal biotechnological materials. Recent molecular studies including genome sequence, mutagenesis, gene expression and proteome analyses indicated a number of genes and proteins which play important roles for BacMP biomineralization. Some of the genes and proteins identified from these studies have allowed us to express functional proteins efficiently onto BacMPs, through genetic engineering, permitting the preservation of the protein activity, leading to a simple preparation of functional protein magnetic particle complexes. They were applicable to high-sensitivity immunoassay, drug screening and cell separation. Furthermore, fully automated single nucleotide polymorphism discrimination and DNA recovery systems have been developed to use these functionalized BacMPs. The nano-sized. ne magnetic particles offer vast potential in new nano-techniques.
引用
收藏
页码:977 / 999
页数:23
相关论文
共 140 条
[1]   Biomineralization - A pavement of pearl [J].
Addadi, L ;
Weiner, S .
NATURE, 1997, 389 (6654) :912-&
[2]   Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy [J].
Amemiya, Y ;
Tanaka, T ;
Yoza, B ;
Matsunaga, T .
JOURNAL OF BIOTECHNOLOGY, 2005, 120 (03) :308-314
[3]   Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6 [J].
Amemiya, Yosuke ;
Arakaki, Atsushi ;
Staniland, Sarah S. ;
Tanaka, Tsuyoshi ;
Matsunaga, Tadashi .
BIOMATERIALS, 2007, 28 (35) :5381-5389
[4]   Bacterial iron homeostasis [J].
Andrews, SC ;
Robinson, AK ;
Rodríguez-Quiñones, F .
FEMS MICROBIOLOGY REVIEWS, 2003, 27 (2-3) :215-237
[5]   A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1 [J].
Arakaki, A ;
Webb, J ;
Matsunaga, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (10) :8745-8750
[6]   Detection of biomolecular interaction between biotin and streptavidin on a self-assembled monolayer using magnetic nanoparticles [J].
Arakaki, A ;
Hideshima, S ;
Nakagawa, T ;
Niwa, D ;
Tanaka, T ;
Matsunaga, T ;
Osaka, T .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 88 (04) :543-546
[7]   ULTRASTRUCTURE OF A MAGNETOTACTIC SPIRILLUM [J].
BALKWILL, DL ;
MARATEA, D ;
BLAKEMORE, RP .
JOURNAL OF BACTERIOLOGY, 1980, 141 (03) :1399-1408
[8]   Magnetosome formation in prokaryotes [J].
Bazylinski, DA ;
Frankel, RB .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (03) :217-230
[9]  
BAZYLINSKI DA, 1995, APPL ENVIRON MICROB, V61, P3232, DOI 10.1128/AEM.61.9.3232-3239.1995
[10]   ELECTRON-MICROSCOPIC STUDIES OF MAGNETOSOMES IN MAGNETOTACTIC BACTERIA [J].
BAZYLINSKI, DA ;
GARRATTREED, AJ ;
FRANKEL, RB .
MICROSCOPY RESEARCH AND TECHNIQUE, 1994, 27 (05) :389-401