Impact of intraband relaxation on the performance of a quantum-dot laser

被引:135
作者
Markus, A [1 ]
Chen, JXX
Gauthier-Lafaye, O
Provost, JG
Paranthoën, C
Fiore, A
机构
[1] Ecole Polytech Fed Lausanne, Inst Quantum Elect & Photon, CH-1015 Lausanne, Switzerland
[2] Alcatel CIT, Opto, F-91461 Marcoussis, France
[3] CNR, Inst Photon & Nanotechnol, I-00156 Rome, Italy
关键词
InGaAs-GaAs; quantum dots (DQs); semiconductor lasers;
D O I
10.1109/JSTQE.2003.819494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Measurements on 1.3-mum quantum-dot lasers are presented that reveal a number of interesting effects. 1) At high bias, a second lasing line appears, corresponding to the excited state transition. 2) The linewidth enhancement factor increases dramatically above threshold. 3) The modulation performance is degraded when the second lasing line appears. A comprehensive numerical model is developed to explain this behavior. We attribute it to incomplete gain clamping above threshold. This is caused by a combination of the finite intraband relaxation time and the limited density of states.
引用
收藏
页码:1308 / 1314
页数:7
相关论文
共 21 条
[1]   QUANTUM SIZE EFFECT ON LONGITUDINAL SPATIAL HOLE BURNING IN MQW LAMBDA-4-SHIFTED DFB LASERS [J].
AOKI, M ;
UOMI, K ;
TSUCHIYA, T ;
SASAKI, S ;
OKAI, M ;
CHINONE, N .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (06) :1782-1789
[2]   Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature [J].
Bhattacharya, P ;
Ghosh, S .
APPLIED PHYSICS LETTERS, 2002, 80 (19) :3482-3484
[3]   Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 μm applications [J].
Chen, JX ;
Markus, A ;
Fiore, A ;
Oesterle, U ;
Stanley, RP ;
Carlin, JF ;
Houdré, R ;
Ilegems, M ;
Lazzarini, L ;
Nasi, L ;
Todaro, MT ;
Piscopiello, E ;
Cingolani, R ;
Catalano, M ;
Katcki, J ;
Ratajczak, J .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (10) :6710-6716
[4]   Matrix effects on the structural and optical properties of InAs quantum dots [J].
Chen, JX ;
Oesterle, U ;
Fiore, A ;
Stanley, RP ;
Ilegems, M ;
Todaro, T .
APPLIED PHYSICS LETTERS, 2001, 79 (22) :3681-3683
[5]   Dynamic characteristics of high-speed In0.4Ga0.6As/GaAs self-organized quantum dot lasers at room temperature [J].
Ghosh, S ;
Pradhan, S ;
Bhattacharya, P .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3055-3057
[6]   Midinfrared emission from near-infrared quantum-dot lasers [J].
Grundmann, M ;
Weber, A ;
Goede, K ;
Ustinov, VM ;
Zhukov, AE ;
Ledentsov, NN ;
Kop'ev, PS ;
Alferov, ZI .
APPLIED PHYSICS LETTERS, 2000, 77 (01) :4-6
[7]   Theory of random population for quantum dots [J].
Grundmann, M ;
Bimberg, D .
PHYSICAL REVIEW B, 1997, 55 (15) :9740-9745
[8]   MEASUREMENT OF THE LINEWIDTH ENHANCEMENT FACTOR-ALPHA OF SEMICONDUCTOR-LASERS [J].
HARDER, C ;
VAHALA, K ;
YARIV, A .
APPLIED PHYSICS LETTERS, 1983, 42 (04) :328-330
[9]   Excited states and energy relaxation in stacked InAs/GaAs quantum dots [J].
Heitz, R ;
Kalburge, A ;
Xie, Q ;
Grundmann, M ;
Chen, P ;
Hoffmann, A ;
Madhukar, A ;
Bimberg, D .
PHYSICAL REVIEW B, 1998, 57 (15) :9050-9060
[10]   1.3 μm room-temperature GaAs-based quantum-dot laser [J].
Huffaker, DL ;
Park, G ;
Zou, Z ;
Shchekin, OB ;
Deppe, DG .
APPLIED PHYSICS LETTERS, 1998, 73 (18) :2564-2566