Real-time characterization of intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase at the T7A1 promoter

被引:70
作者
Sclavi, B [1 ]
Zaychikov, E
Rogozina, A
Walther, F
Buckle, M
Heumann, H
机构
[1] Ecole Normale Super, CNRS, Unite Mixte Rech 8113, Lab Biotechnol & Pharmacol Genet Appl, F-94235 Cachan, France
[2] Max Planck Inst Biochem, D-82152 Martinsried, Germany
关键词
DNA-protein interactions; time-resolved footprinting; transcription; hydroxyl radicals;
D O I
10.1073/pnas.0408218102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have used time-resolved x-ray-generated hydroxyl radical footprinting to directly characterize, at single-nucleotide resolution, several intermediates in the pathway to open complex formation by Escherichia coli RNA polymerase on the T7A1 promoter at 37 degrees C. Three sets of intermediates, corresponding to two major conformational changes, are resolved as a function of time; multiple conformations equilibrate amongst each other before the next large structural change. Analysis of these data in the context of published structural models indicates that initial recognition involves interaction of the UP element with the alpha-subunit C-terminal domain and binding of the alpha subunit to the -35 sequence. In the subsequent isomerization step, two complexes with footprints extending into the -10 region can be differentiated as the DNA becomes distorted during nucleation of strand separation. During the final isomerization step, the downstream double helix becomes embedded in the beta/beta' jaws, leading to a transcriptionally active complex.
引用
收藏
页码:4706 / 4711
页数:6
相关论文
共 44 条
[1]   DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone [J].
Balasubramanian, B ;
Pogozelski, WK ;
Tullius, TD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :9738-9743
[2]   Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical 'footprinting' [J].
Brenowitz, M ;
Chance, MR ;
Dhavan, G ;
Takamoto, K .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (05) :648-653
[3]   FOOTPRINT TITRATIONS YIELD VALID THERMODYNAMIC ISOTHERMS [J].
BRENOWITZ, M ;
SENEAR, DF ;
SHEA, MA ;
ACKERS, GK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (22) :8462-8466
[4]   KINETICS OF OPEN COMPLEX-FORMATION BETWEEN ESCHERICHIA-COLI RNA-POLYMERASE AND THE LAC UV5 PROMOTER - EVIDENCE FOR A SEQUENTIAL MECHANISM INVOLVING 3 STEPS [J].
BUC, H ;
MCCLURE, WR .
BIOCHEMISTRY, 1985, 24 (11) :2712-2723
[5]   The kinetics of sigma subunit directed promoter recognition by E-coli RNA polymerase [J].
Buckle, M ;
Pemberton, IK ;
Jacquet, MA ;
Buc, H .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (03) :955-964
[6]   Structure of the bacterial RNA polymerase promoter specificity σ subunit [J].
Campbell, EA ;
Muzzin, O ;
Chlenov, M ;
Sun, JL ;
Olson, CA ;
Weinman, O ;
Trester-Zedlitz, ML ;
Darst, SA .
MOLECULAR CELL, 2002, 9 (03) :527-539
[7]   Functional interaction between RNA polymerase α subunit C-terminal domain and σ70 in UP-element- and activator-dependent transcription [J].
Chen, H ;
Tang, H ;
Ebright, RH .
MOLECULAR CELL, 2003, 11 (06) :1621-1633
[8]   DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: Evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA [J].
Craig, ML ;
Tsodikov, OV ;
McQuade, KL ;
Schlax, PE ;
Capp, MW ;
Saecker, RM ;
Record, MT .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 283 (04) :741-756
[9]  
DAVIS CA, 2004, P NATL ACAD SCI 1230
[10]  
DAYTON CJ, 1984, J BIOL CHEM, V259, P1616