Pulsed plasma-induced alignment of carbon nanotubes

被引:14
作者
Valentini, L [1 ]
Armentano, I
Kenny, JM
Lozzi, L
Santucci, S
机构
[1] Univ Perugia, Mat Engn Ctr, I-05100 Terni, Italy
[2] Univ Aquila, Dipartimento Fis, Unita INFM, I-67010 Coppito, AQ, Italy
关键词
pulsed plasma-induced alignment; carbon nanotubes; Raman spectroscopy;
D O I
10.1016/S0167-577X(03)00166-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The growth of uniform films of well-aligned carbon nanotubes (CNTs) using pulsed plasma-enhanced chemical vapor deposition is reported here. It is demonstrated that nanotubes can be grown on a certain critical catalyst film thickness and that their alignment is primarily induced by pulsed plasma excitation time. It is, in fact, found that switching the plasma source for 0.1 s effectively turns the alignment mechanism on, leading to a sharp transition between the pulsed plasma-grown straight nanotubes and continuous plasma-grown curly nanotubes. Raman spectroscopy was successfully applied to confirm that, by employing a suitable plasma excitation time, it is possible to obtain the growth of nanotubes with a limited presence of amorphous carbon on the substrate surface. The pulsed biasing technique offers an efficient method to adjust the CNTs' alignment by independent control of the neutral radical and ion fluxes to the surface. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:3699 / 3704
页数:6
相关论文
共 33 条
[1]   COBALT-CATALYZED GROWTH OF CARBON NANOTUBES WITH SINGLE-ATOMIC-LAYERWALLS [J].
BETHUNE, DS ;
KIANG, CH ;
DEVRIES, MS ;
GORMAN, G ;
SAVOY, R ;
VAZQUEZ, J ;
BEYERS, R .
NATURE, 1993, 363 (6430) :605-607
[2]   Plasma-induced alignment of carbon nanotubes [J].
Bower, C ;
Zhu, W ;
Jin, SH ;
Zhou, O .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :830-832
[3]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[4]   Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature [J].
Choi, YC ;
Bae, DJ ;
Lee, YH ;
Lee, BS ;
Park, GS ;
Choi, WB ;
Lee, NS ;
Kim, JM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2000, 18 (04) :1864-1868
[5]   Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition [J].
Choi, YC ;
Bae, DJ ;
Lee, YH ;
Lee, BS ;
Han, IT ;
Choi, WB ;
Lee, NS ;
Kim, JM .
SYNTHETIC METALS, 2000, 108 (02) :159-163
[6]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[7]   Broken symmetry and pseudogaps in ropes of carbon nanotubes [J].
Delaney, P ;
Choi, HJ ;
Ihm, J ;
Louie, SG ;
Cohen, ML .
NATURE, 1998, 391 (6666) :466-468
[8]   Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor [J].
Delzeit, L ;
McAninch, I ;
Cruden, BA ;
Hash, D ;
Chen, B ;
Han, J ;
Meyyappan, M .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (09) :6027-6033
[9]   Phonons in carbon nanotubes [J].
Dresselhaus, MS ;
Eklund, PC .
ADVANCES IN PHYSICS, 2000, 49 (06) :705-814
[10]  
DRESSELHAUS MS, 1996, SCI FULLERENES CARBO, pCH19