Quantum-process tomography: Resource analysis of different strategies

被引:298
作者
Mohseni, M. [1 ,2 ,3 ,4 ]
Rezakhani, A. T. [3 ,4 ,5 ]
Lidar, D. A. [2 ,3 ,4 ,6 ]
机构
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[2] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ So Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Chem & Phys, Los Angeles, CA 90089 USA
[5] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB T2N 1N4, Canada
[6] Univ So Calif, Dept Phys & Elect Engn, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW A | 2008年 / 77卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.77.032322
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Characterization of quantum dynamics is a fundamental problem in quantum physics and quantum-information science. Several methods are known which achieve this goal, namely standard quantum-process tomography (SQPT), ancilla-assisted process tomography, and the recently proposed scheme of direct characterization of quantum dynamics (DCQD). Here, we review these schemes and analyze them with respect to some of the physical resources they require. Although a reliable figure-of-merit for process characterization is not yet available, our analysis can provide a benchmark which is necessary for choosing the scheme that is the most appropriate in a given situation, with given resources. As a result, we conclude that for quantum systems where two-body interactions are not naturally available, SQPT is the most efficient scheme. However, for quantum systems with controllable two-body interactions, the DCQD scheme is more efficient than other known quantum-process tomography schemes in terms of the total number of required elementary quantum operations.
引用
收藏
页数:15
相关论文
共 93 条
[1]   Optimal estimation of quantum dynamics -: art. no. 050302 [J].
Acín, A ;
Jané, E ;
Vidal, G .
PHYSICAL REVIEW A, 2001, 64 (05) :4
[2]   Determining a quantum state by means of a single apparatus [J].
Allahverdyan, AE ;
Balian, R ;
Nieuwenhuizen, TM .
PHYSICAL REVIEW LETTERS, 2004, 92 (12) :120402-1
[3]   Ancilla-assisted quantum process tomography [J].
Altepeter, JB ;
Branning, D ;
Jeffrey, E ;
Wei, TC ;
Kwiat, PG ;
Thew, RT ;
O'Brien, JL ;
Nielsen, MA ;
White, AG .
PHYSICAL REVIEW LETTERS, 2003, 90 (19) :4
[4]  
[Anonymous], ARXIVQUANTPH9705052
[5]  
Arrighi P, 2004, ANN PHYS-NEW YORK, V311, P26, DOI 10.1006/j.aop.2003.11.005
[6]   An invitation to quantum tomography [J].
Artiles, LM ;
Gill, RD ;
Guta, MI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 :109-134
[7]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[8]   Comprehensive analysis of quantum pure-state estimation for two-level systems -: art. no. 062318 [J].
Bagan, E ;
Monras, A ;
Muñoz-Tapia, R .
PHYSICAL REVIEW A, 2005, 71 (06)
[9]   Estimation of unitary quantum operations [J].
Ballester, MA .
PHYSICAL REVIEW A, 2004, 69 (02) :6
[10]  
BALLESTER MA, 2005, THESIS UTRECHT U