Perturbative finiteness in spin-foam quantum gravity

被引:51
作者
Crane, L [1 ]
Perez, A
Rovelli, C
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Inst Super Tecn, Lisbon, Portugal
[3] CPT, Marseille, France
关键词
D O I
10.1103/PhysRevLett.87.181301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lorentzian "normalized balanced state sum model" of quantum general relativity is finite on any nondegenerate triangulation. It provides a candidate for a background independent, perturbatively finite, quantum theory of general relativity in four dimensions and with Lorentzian signature.
引用
收藏
页码:181301 / 1
页数:4
相关论文
共 52 条
[1]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[2]  
[Anonymous], ADV THEOR MATH PHYS
[3]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[4]   Spin foam models [J].
Baez, JC .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (07) :1827-1858
[5]  
BAEZ JC, GRQC0101107
[6]  
Barrett J W., 1999, Adv. Theor. Math. Phys., V3, P209
[7]   Relativistic spin networks and quantum gravity [J].
Barrett, JW ;
Crane, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3296-3302
[8]   A Lorentzian signature model for quantum general relativity [J].
Barrett, JW ;
Crane, L .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (16) :3101-3118
[9]   A note on area variables in Regge calculus [J].
Barrett, JW ;
Rocek, M ;
Williams, RM .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (04) :1373-1376
[10]   A MODEL OF 3-DIMENSIONAL LATTICE GRAVITY [J].
BOULATOV, DV .
MODERN PHYSICS LETTERS A, 1992, 7 (18) :1629-1646