Perturbative finiteness in spin-foam quantum gravity

被引:51
作者
Crane, L [1 ]
Perez, A
Rovelli, C
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Inst Super Tecn, Lisbon, Portugal
[3] CPT, Marseille, France
关键词
D O I
10.1103/PhysRevLett.87.181301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lorentzian "normalized balanced state sum model" of quantum general relativity is finite on any nondegenerate triangulation. It provides a candidate for a background independent, perturbatively finite, quantum theory of general relativity in four dimensions and with Lorentzian signature.
引用
收藏
页码:181301 / 1
页数:4
相关论文
共 52 条
[21]  
GROSS D, 1990, PHYS REV LETT, V64, P63
[22]  
HAWKING SW, 1979, GEN RELIABILITY EISE
[23]   A DEFINITION OF THE PONZANO-REGGE QUANTUM-GRAVITY MODEL IN TERMS OF SURFACES [J].
IWASAKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6288-6298
[24]  
IWASAKI J, GRQC0006088
[25]   CRITICAL PROPERTIES OF RANDOMLY TRIANGULATED PLANAR RANDOM SURFACES [J].
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
PHYSICS LETTERS B, 1985, 157 (04) :295-300
[26]   Quantum field theory of spin networks [J].
Mikovic, A .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (14) :2827-2850
[27]   FEYNMAN QUANTIZATION OF GENERAL RELATIVITY [J].
MISNER, CW .
REVIEWS OF MODERN PHYSICS, 1957, 29 (03) :497-509
[28]   TOPOLOGICAL LATTICE MODELS IN 4 DIMENSIONS [J].
OOGURI, H .
MODERN PHYSICS LETTERS A, 1992, 7 (30) :2799-2810
[29]  
ORITI D, 2001, PHYS REV D, V63
[30]  
ORITI D, GRQC0106091