Perturbative finiteness in spin-foam quantum gravity

被引:51
作者
Crane, L [1 ]
Perez, A
Rovelli, C
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[2] Inst Super Tecn, Lisbon, Portugal
[3] CPT, Marseille, France
关键词
D O I
10.1103/PhysRevLett.87.181301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lorentzian "normalized balanced state sum model" of quantum general relativity is finite on any nondegenerate triangulation. It provides a candidate for a background independent, perturbatively finite, quantum theory of general relativity in four dimensions and with Lorentzian signature.
引用
收藏
页码:181301 / 1
页数:4
相关论文
共 52 条
[11]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[12]   Tensor product of principal unitary representations of quantum Lorentz group and Askey-Wilson polynomials [J].
Buffenoir, E ;
Roche, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (11) :7715-7751
[13]   A PURE SPIN-CONNECTION FORMULATION OF GRAVITY [J].
CAPOVILLA, R ;
DELL, J ;
JACOBSON, T .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (01) :59-73
[14]  
CRANE L, GRQC0004043
[15]  
CRANE L, GRQC9712087
[16]   PLANAR DIAGRAMS, TWO-DIMENSIONAL LATTICE GRAVITY AND SURFACE MODELS [J].
DAVID, F .
NUCLEAR PHYSICS B, 1985, 257 (01) :45-58
[17]   Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space [J].
De Pietri, R ;
Freidel, L ;
Krasnov, K ;
Rovelli, C .
NUCLEAR PHYSICS B, 2000, 574 (03) :785-806
[18]   STRINGS IN LESS THAN ONE DIMENSION [J].
DOUGLAS, MR ;
SHENKER, SH .
NUCLEAR PHYSICS B, 1990, 335 (03) :635-654
[19]   Simple spin networks as Feynman graphs [J].
Freidel, L ;
Krasnov, K .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) :1681-1690
[20]  
Freidel L., 1999, Adv. Theor. Math. Phys., V2, P1183