Performance evaluation of iterative geometric fitting algorithms

被引:31
作者
Kanatani, Kenichi [1 ]
Sugaya, Yasuyuki [2 ]
机构
[1] Okayama Univ, Dept Comp Sci, Okayama 7008530, Japan
[2] Toyohashi Univ Technol, Dept Comp & Informat Sci, Toyohashi, Aichi 4418580, Japan
关键词
geometric fitting; ellipse fitting; fundamental matrix; KCR lower bound; convergence performance;
D O I
10.1016/j.csda.2007.05.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The convergence performance of typical numerical schemes for geometric fitting for computer vision applications is compared. First, the problem and the associated KCR lower bound are stated. Then, three well-known fitting algorithms are described: FNS, HEIV, and renormalization. To these, we add a special variant of Gauss-Newton iterations. For initialization of iterations, random choice, least squares, and Taubin's method are tested. Simulation is conducted for fundamental matrix computation and ellipse fitting, which reveals different characteristics of each method. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1208 / 1222
页数:15
相关论文
共 19 条
  • [1] BJORCK A, 1996, NUMERICAL METHODS LE
  • [2] FITTING CONIC SECTIONS TO SCATTERED DATA
    BOOKSTEIN, FL
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1979, 9 (01): : 56 - 71
  • [3] On the convergence of fitting algorithms in computer vision
    Chernov, N.
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 27 (03) : 231 - 239
  • [4] Statistical efficiency of curve fitting algorithms
    Chernov, N
    Lesort, C
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 47 (04) : 713 - 728
  • [5] FNS, CFNS and HEIV: A unifying approach
    Chojnacki, W
    Brooks, MJ
    van den Hengel, A
    Gawley, D
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2005, 23 (02) : 175 - 183
  • [6] A new constrained parameter estimator for computer vision applications
    Chojnacki, W
    Brooks, MJ
    van den Hengel, A
    Gawley, D
    [J]. IMAGE AND VISION COMPUTING, 2004, 22 (02) : 85 - 91
  • [7] Chojnacki W, 2000, IEEE T PATTERN ANAL, V22, P1294, DOI 10.1109/34.888714
  • [8] Direct least square fitting of ellipses
    Fitzgibbon, A
    Pilu, M
    Fisher, RB
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (05) : 476 - 480
  • [9] LEAST-SQUARES FITTING OF CIRCLES AND ELLIPSES
    GANDER, W
    GOLUB, GH
    STREBEL, R
    [J]. BIT, 1994, 34 (04): : 558 - 578
  • [10] HARTLEY R, 2000, MULTIPLE VIEW COMPUT