The electrical properties of graphene modified by bromophenyl groups derived from a diazonium compound

被引:43
作者
Dong, Xiaochen [2 ]
Long, Qing [2 ]
Wei, Ang [2 ]
Zhang, Wenjing [3 ]
Li, Lain-Jong [3 ]
Chen, Peng [1 ]
Huang, Wei [2 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
[2] NUPT, IAM, KLOEID, Nanjing 210046, Jiangsu, Peoples R China
[3] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
基金
新加坡国家研究基金会;
关键词
WALLED CARBON NANOTUBES; ELECTROCHEMICAL REDUCTION; CHEMICAL-MODIFICATION; COVALENT MODIFICATION; BILAYER GRAPHENE; SINGLE-LAYER; FUNCTIONALIZATION; MULTILAYERS; REACTIVITY; SCATTERING;
D O I
10.1016/j.carbon.2011.11.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene field-effect transistors were fabricated with mechanically exfoliated single-layer graphene (SLG) and bilayer graphene (BLG) sheets and the functionalization effects of bromophenyl groups derived from a diazonium compound on its transfer properties were explored. Spectroscopic and electrical studies reveal that the bromophenyl grafting imposes p-doping to both SLG and BLG. The modification of SLG by bromophenyl groups significantly reduces the hole carrier mobility and the saturation current in SLG transistors, suggesting an increase in both long-range impurity and short-range defect scattering. Unexpectedly, the bromophenyl group functionalization on BLG does not obviously increase both types of scattering, indicating that the BLG is relatively more resistant to charge- or defect-induced scattering. The results indicate that chemical modification is a simple approach to tailor the electrical properties of graphene sheets with different numbers of layers. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1517 / 1522
页数:6
相关论文
共 42 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Boltzmann transport and residual conductivity in bilayer graphene [J].
Adam, Shaffique ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2008, 77 (11)
[3]   Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts [J].
Allongue, P ;
Delamar, M ;
Desbat, B ;
Fagebaume, O ;
Hitmi, R ;
Pinson, J ;
Saveant, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (01) :201-207
[4]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[5]   Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups [J].
Bekyarova, Elena ;
Itkis, Mikhail E. ;
Ramesh, Palanisamy ;
Berger, Claire ;
Sprinkle, Michael ;
de Heer, Walt A. ;
Haddon, Robert C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) :1336-+
[6]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[7]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[8]   Tuneable electronic properties in graphene [J].
Craciun, M. F. ;
Russo, S. ;
Yamamoto, M. ;
Tarucha, S. .
NANO TODAY, 2011, 6 (01) :42-60
[9]   Changes in the electronic structure and properties of graphene induced by molecular charge-transfer [J].
Das, Barun ;
Voggu, Rakesh ;
Rout, Chandra Sekhar ;
Rao, C. N. R. .
CHEMICAL COMMUNICATIONS, 2008, (41) :5155-5157
[10]   Theory of carrier transport in bilayer graphene [J].
Das Sarma, S. ;
Hwang, E. H. ;
Rossi, E. .
PHYSICAL REVIEW B, 2010, 81 (16)