Stability of stationary states in the cubic nonlinear Schrodinger equation: Applications to the Bose-Einstein condensate

被引:59
作者
Carr, LD [1 ]
Kutz, JN
Reinhardt, WP
机构
[1] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[3] Univ Washington, Dept Chem, Seattle, WA 98195 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 06期
关键词
D O I
10.1103/PhysRevE.63.066604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The cubic nonlinear Schrodinger equation is the quasi-one-dimensional limit of the mean-field theory which models dilute gas Bose-Einstein condensates. Stationary solutions of this equation can be characterized as soliton trains. It is demonstrated that for repulsive nonlinearity a soliton train is stable to initial stochastic perturbation, while for attractive nonlinearity its behavior depends on the spacing between individual solitons in the train. Toroidal and harmonic confinement, both of experimental interest for Bose-Einstein condensates, are considered.
引用
收藏
页数:9
相关论文
共 52 条
[31]   GORDON-HAUS EFFECT ON DARK SOLITONS [J].
KIVSHAR, YS ;
HAELTERMAN, M ;
EMPLIT, P ;
HAMAIDE, JP .
OPTICS LETTERS, 1994, 19 (01) :19-21
[32]  
KIVSHAR YS, IN PRESS PHYS REV LE
[33]   ORDERING, METASTABILITY AND PHASE-TRANSITIONS IN 2 DIMENSIONAL SYSTEMS [J].
Kosterlitz, JM ;
Thouless, DJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (07) :1181-1203
[34]   INTERACTING GRAY SOLITONS [J].
LERNER, L ;
MITCHELL, DJ ;
SNYDER, AW .
OPTICS LETTERS, 1994, 19 (17) :1302-1304
[35]   Vortices in a Bose-Einstein condensate [J].
Matthews, MR ;
Anderson, BP ;
Haljan, PC ;
Hall, DS ;
Wieman, CE ;
Cornell, EA .
PHYSICAL REVIEW LETTERS, 1999, 83 (13) :2498-2501
[36]   Atomic soliton reservoir:: How to increase the critical atom number in negative-scattering-length Bose-Einstein gases [J].
Michinel, H ;
Pérez-García, VM ;
de la Fuente, R .
PHYSICAL REVIEW A, 1999, 60 (02) :1513-1518
[37]   KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .2. EXISTENCE OF CONSERVATION LAWS AND CONSTANTS OF MOTION [J].
Miura, RM ;
GARDNER, CS ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (08) :1204-+
[39]   A gapless theory of Bose-Einstein condensation in dilute gases at finite temperature [J].
Morgan, SA .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (19) :3847-3893
[40]  
MORGAN SL, COMMUNICATION