Analytic expression for the short-time rate of growth of the intermaterial contact perimeter in two-dimensional chaotic flows and Hamiltonian systems

被引:23
作者
Adrover, A
Giona, M
Muzzio, FJ
Cerbelli, S
Alvarez, MM
机构
[1] Univ Rome La Sapienza, Dipartimento Ingn Chim, Ctr Interuniv Sistemi Disordinati & Frattali Ingn, I-00184 Rome, Italy
[2] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08855 USA
[3] Univ Cagliari, Dipartimento Ingn Chim, I-09123 Cagliari, Italy
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 01期
关键词
D O I
10.1103/PhysRevE.58.447
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This article derives an analytic expression for the short- or intermediate-time behavior of the moment hierarchy of finite-time Liapunov exponents (stretching exponents) for two-dimensional periodically forced Hamiltonian systems and incompressible time-periodic fluid flows,As a result, the exponent characterizing the apparent short-time exponential growth of the intermaterial contact perimeter for two-dimensional systems can be predicted from the statistical properties of the invariant stretching distribution. The analysis as a whole is in fact grounded on an analytic expression for the high stretching tail of the invariant distribution of the finite-time Liapunov exponents. The asymptotic behavior of the moment hierarchy of the stretching field is also addressed in order to highlight the role of the dynamic heterogeneity accounted for by the variance of the stretching exponents.
引用
收藏
页码:447 / 458
页数:12
相关论文
共 38 条
[1]  
ADROVER A, IN PRESS PHYSICA D
[2]  
ADROVER A, UNPUB
[3]  
ADROVER A, IN PRESS PHYSICA A
[4]  
ALVAREZ MA, UNPUB
[5]  
Alvarez MM, 1997, FRACTALS IN ENGINEERING, P323
[6]  
[Anonymous], [No title captured]
[7]  
ANOSOV DV, 1995, ENCYCL MATH SCI, V66, P10
[8]  
Arnol'd VI, 1983, GEOMETRICAL METHODS
[9]   Resonances for intermittent systems [J].
Baladi, V. ;
Eckmann, J-P ;
Ruelle, D. .
NONLINEARITY, 1989, 2 (01) :119-135
[10]   INVARIANT MANIFOLD TEMPLATES FOR CHAOTIC ADVECTION [J].
BEIGIE, D ;
LEONARD, A ;
WIGGINS, S .
CHAOS SOLITONS & FRACTALS, 1994, 4 (06) :749-868