The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning

被引:318
作者
Lee, HJ [1 ]
Xiong, LM [1 ]
Gong, ZZ [1 ]
Ishitani, M [1 ]
Stevenson, B [1 ]
Zhu, JK [1 ]
机构
[1] Univ Arizona, Dept Plant Sci, Tucson, AZ 85721 USA
关键词
low temperature; signal transduction; HOS1; FLC; RING finger;
D O I
10.1101/gad.866801
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Low temperature is one of the most important environmental stimuli that control gene transcription programs and development in plants. In Arabidopsis thaliana, the HOS1 locus is a key negative regulator of low temperature-responsive gene transcription. The recessive hos1 mutation causes enhanced induction of the CBF transcription factors by low temperature as well as of their downstream cold-responsive genes. The hos1 mutant plants flower early, and this correlates with a low level of Flowering Locus C gene expression. The HOS1 gene was isolated through positional cloning. HOS1 encodes a novel protein with a RING finger motif near the amino terminus. HOS1 is ubiquitously expressed in all plant tissues. HOS1-GFP translational fusion studies reveal that HOS1 protein resides in the cytoplasm at normal growth temperatures. However, in response to low temperature treatments, HOS1 accumulates in the nucleus. Ectopic expression of HOS1 in wild-type plants causes cosuppression of HOS1 expression and mimics the hos1 mutant phenotypes.
引用
收藏
页码:912 / 924
页数:13
相关论文
共 48 条
[1]   STRUCTURAL ORGANIZATION OF THE SPINACH ENDOPLASMIC RETICULUM-LUMINAL 70-KILODALTON HEAT-SHOCK COGNATE GENE AND EXPRESSION OF 70-KILODALTON HEAT-SHOCK GENES DURING COLD-ACCLIMATION [J].
ANDERSON, JV ;
LI, QB ;
HASKELL, DW ;
GUY, CL .
PLANT PHYSIOLOGY, 1994, 104 (04) :1359-1370
[2]   Arabidopsis mutants showing an altered response to vernalization [J].
Chandler, J ;
Wilson, A ;
Dean, C .
PLANT JOURNAL, 1996, 10 (04) :637-644
[3]   INVOLVEMENT OF ABSCISIC-ACID IN POTATO COLD-ACCLIMATION [J].
CHEN, HH ;
LI, PH ;
BRENNER, ML .
PLANT PHYSIOLOGY, 1983, 71 (02) :362-365
[4]   Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency [J].
Cutler, SR ;
Ehrhardt, DW ;
Griffitts, JS ;
Somerville, CR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3718-3723
[5]   COP1, AN ARABIDOPSIS REGULATORY GENE, ENCODES A PROTEIN WITH BOTH A ZINC-BINDING MOTIF AND A G-BETA HOMOLOGOUS DOMAIN [J].
DENG, XW ;
MATSUI, M ;
WEI, N ;
WAGNER, D ;
CHU, AM ;
FELDMANN, KA ;
QUAIL, PH .
CELL, 1992, 71 (05) :791-801
[6]   Ubiquitination: RING for destruction? [J].
Freemont, PS .
CURRENT BIOLOGY, 2000, 10 (02) :R84-R87
[7]   CLONING OF A TEMPERATURE-REGULATED GENE ENCODING A CHLOROPLAST OMEGA-3 DESATURASE FROM ARABIDOPSIS-THALIANA [J].
GIBSON, S ;
ARONDEL, V ;
IBA, K ;
SOMERVILLE, C .
PLANT PHYSIOLOGY, 1994, 106 (04) :1615-1621
[8]   CDNA SEQUENCE-ANALYSIS AND EXPRESSION OF 2 COLD-REGULATED GENES OF ARABIDOPSIS-THALIANA [J].
GILMOUR, SJ ;
ARTUS, NN ;
THOMASHOW, MF .
PLANT MOLECULAR BIOLOGY, 1992, 18 (01) :13-21
[9]   Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression [J].
Gilmour, SJ ;
Zarka, DG ;
Stockinger, EJ ;
Salazar, MP ;
Houghton, JM ;
Thomashow, MF .
PLANT JOURNAL, 1998, 16 (04) :433-442
[10]   Green-fluorescent protein fusions for efficient characterization of nuclear targeting [J].
Grebenok, RJ ;
Pierson, E ;
Lambert, GM ;
Gong, FC ;
Afonso, CL ;
HaldemanCahill, R ;
Carrington, JC ;
Galbraith, DW .
PLANT JOURNAL, 1997, 11 (03) :573-586