A Randomized Divide and Conquer Algorithm for Higher-Order Abstract Voronoi Diagrams

被引:3
作者
Bohler, Cecilia [1 ]
Liu, Chih-Hung [1 ]
Papadopoulou, Evanthia [2 ]
Zavershynskyi, Maksym [2 ]
机构
[1] Univ Bonn, Inst Comp Sci 1, D-53113 Bonn, Germany
[2] USI, Fac Informat, Lugano, Switzerland
来源
ALGORITHMS AND COMPUTATION, ISAAC 2014 | 2014年 / 8889卷
关键词
Higher-Order Voronoi Diagram; Abstract Voronoi Diagram; Randomized Algorithm; Divide and Conquer; CONSTRUCTION;
D O I
10.1007/978-3-319-13075-0_3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set of sites in the plane, their order-k Voronoi diagram partitions the plane into regions such that all points within one region have the same k nearest sites. The order-k abstract Voronoi diagram is defined in terms of bisecting curves satisfying some simple combinatorial properties, rather than the geometric notions of sites and distance, and it represents a wide class of order-k concrete Voronoi diagrams. In this paper we develop a randomized divide-and-conquer algorithm to compute the order-k abstract Voronoi diagram in expected O(kn(1+epsilon)) operations. For solving small sub-instances in the divide-and-conquer process, we also give two sub-algorithms with expected O(k(2)n log n) and O(n 2 2 a(n) log n) time, respectively. This directly implies an O(kn(1+epsilon))-time algorithm for several concrete order-k instances such as points in any convex distance, disjoint line segments and convex polygons of constant size in the L-p norm, and others.
引用
收藏
页码:27 / 37
页数:11
相关论文
共 19 条
[1]   Constructing levels in arrangements and higher order Voronoi diagrams [J].
Agarwal, PK ;
de Berg, M ;
Matousek, J ;
Schwarzkopf, O .
SIAM JOURNAL ON COMPUTING, 1998, 27 (03) :654-667
[2]   A SIMPLE ON-LINE RANDOMIZED INCREMENTAL ALGORITHM FOR COMPUTING HIGHER ORDER VORONOI DIAGRAMS [J].
Aurenhammer, Franz ;
Schwarzkopf, Otfried .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (04) :363-381
[3]  
Bohler C, 2013, LECT NOTES COMPUT SC, V7965, P208, DOI 10.1007/978-3-642-39206-1_18
[4]   A SEMIDYNAMIC CONSTRUCTION OF HIGHER-ORDER VORONOI DIAGRAMS AND ITS RANDOMIZED ANALYSIS [J].
BOISSONNAT, JD ;
DEVILLERS, O ;
TEILLAUD, M .
ALGORITHMICA, 1993, 9 (04) :329-356
[5]   Random sampling, halfspace range reporting, and construction of (≤k)-levels in three dimensions [J].
Chan, TM .
SIAM JOURNAL ON COMPUTING, 2000, 30 (02) :561-575
[6]   AN IMPROVED ALGORITHM FOR CONSTRUCTING KTH-ORDER VORONOI DIAGRAMS [J].
CHAZELLE, B ;
EDELSBRUNNER, H .
IEEE TRANSACTIONS ON COMPUTERS, 1987, 36 (11) :1349-1354
[7]   NEW APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY [J].
CLARKSON, KL .
DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (02) :195-222
[8]  
Gemsa Andreas, 2012, Algorithm Theory-SWAT 2012. Proceedings 13th Scandinavian Symposium and Workshops, P59, DOI 10.1007/978-3-642-31155-0_6
[9]   Taking a walk in a planar arrangement [J].
Har-Peled, S .
SIAM JOURNAL ON COMPUTING, 2000, 30 (04) :1341-1367
[10]   RANDOMIZED INCREMENTAL CONSTRUCTION OF ABSTRACT VORONOI DIAGRAMS [J].
KLEIN, R ;
MEHLHORN, K ;
MEISER, S .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1993, 3 (03) :157-184