Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells

被引:265
作者
Ahamed, Maqusood [1 ]
Akhtar, Mohd Javed [2 ]
Siddiqui, Maqsood A. [3 ]
Ahmad, Javed [3 ]
Musarrat, Javed [3 ]
Al-Khedhairy, Abdulaziz A. [3 ]
AlSalhi, Mohamad S. [1 ]
Alrokayan, Salman A. [1 ]
机构
[1] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia
[2] Indian Inst Toxicol Res, Fibre Toxicol Div, Lucknow 226001, Uttar Pradesh, India
[3] King Saud Univ, Dept Zool, Al Jeraisy Chair DNA Res, Riyadh 11451, Saudi Arabia
关键词
Nickel ferrite nanoparticles; Oxidative stress; Apoptosis; p53; Survivin; IRON-OXIDE NANOPARTICLES; SILVER NANOPARTICLES; MAGNETIC NANOPARTICLES; DRUG-DELIVERY; PARTICLE-SIZE; DNA-DAMAGE; CYTOTOXICITY; GENOTOXICITY; ACTIVATION; SURVIVIN;
D O I
10.1016/j.tox.2011.02.010
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Due to the interesting magnetic and electrical properties with good chemical and thermal stabilities, nickel ferrite nanoparticles are being utilized in many applications including magnetic resonance imaging, drug delivery and hyperthermia. Recent studies have shown that nickel ferrite nanoparticles produce cytotoxicity in mammalian cells. However, there is very limited information concerning the toxicity of nickel ferrite nanoparticles at the cellular and molecular level. The aim of this study was to investigate the cytotoxicity, oxidative stress and apoptosis induction by well-characterized nickel ferrite nanoparticles (size 26 nm) in human lung epithelial (A549) cells. Nickel ferrite nanoparticles induced dose-dependent cytotoxicity in A549 cells demonstrated by MTT, NRU and LDH assays. Nickel ferrite nanoparticles were also found to induce oxidative stress evidenced by generation of reactive oxygen species (ROS) and depletion of antioxidant glutathione (GSH). Further, co-treatment with the antioxidant L-ascorbic acid mitigated the ROS generation and GSH depletion due to nickel ferrite nanoparticles suggesting the potential mechanism of oxidative stress. Quantitative real-time PCR analysis demonstrated that following the exposure of A549 cells to nickel ferrite nanoparticles, the level of mRNA expressions of cell cycle checkpoint protein p53 and apoptotic proteins (bax, caspase-3 and caspase-9) were significantly up-regulated, whereas the expression of anti-apoptotic proteins (survivin and bcl-2) were down-regulated. Moreover, activities of caspase-3 and caspase-9 enzymes were also significantly higher in nickel ferrite nanoparticles exposed cells. To the best of our knowledge this is the first report showing that nickel ferrite nanoparticles induced apoptosis in A549 cells through ROS generation and oxidative stress via p53, survivin, bax/bcl-2 and caspase pathways. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 60 条
[1]  
AHAMED M, 2011, NANOMEDICIN IN PRESS
[2]  
AHAMED M, 2011, TOXICOL IN VITRO
[3]   Silver nanoparticle applications and human health [J].
Ahamed, Maqusood ;
AlSalhi, Mohamad S. ;
Siddiqui, M. K. J. .
CLINICA CHIMICA ACTA, 2010, 411 (23-24) :1841-1848
[4]   Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells [J].
Ahamed, Maqusood ;
Siddiqui, Maqsood A. ;
Akhtar, Mohd J. ;
Ahmad, Iqbal ;
Pant, Aditya B. ;
Alhadlaq, Hisham A. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 396 (02) :578-583
[5]   Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster [J].
Ahamed, Maqusood ;
Posgai, Ryan ;
Gorey, Timothy J. ;
Nielsen, Mark ;
Hussain, Saber M. ;
Rowe, John J. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 242 (03) :263-269
[6]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[7]   Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells [J].
Akhtar, Mohd Javed ;
Ahamed, Maqusood ;
Kumar, Sudhir ;
Siddiqui, Huma ;
Patil, Govil ;
Ashquin, Mohd ;
Ahmad, Iqbal .
TOXICOLOGY, 2010, 276 (02) :95-102
[8]   The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid [J].
Akhtar, Mohd Javed ;
Kumar, Sudhir ;
Murthy, Ramesh Chandra ;
Ashquin, Mohd ;
Khan, Mohd Imran ;
Patil, Govil ;
Ahmad, Iqbal .
TOXICOLOGY IN VITRO, 2010, 24 (04) :1139-1147
[9]   Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling [J].
Apopa, Patrick L. ;
Qian, Yong ;
Shao, Rong ;
Guo, Nancy Lan ;
Schwegler-Berry, Diane ;
Pacurari, Maricica ;
Porter, Dale ;
Shi, Xianglin ;
Vallyathan, Val ;
Castranova, Vincent ;
Flynn, Daniel C. .
PARTICLE AND FIBRE TOXICOLOGY, 2009, 6
[10]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290