Parameter analysis of a practical lithium- and sodium-air electric vehicle battery

被引:136
作者
Peled, E. [1 ]
Golodnitsky, D. [2 ]
Mazor, H. [1 ]
Goor, M. [1 ]
Avshalomov, S. [1 ]
机构
[1] Tel Aviv Univ, Sch Chem, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Wolfson Appl Mat Res Ctr, IL-69978 Tel Aviv, Israel
关键词
Lithium; Sodium; Air; Rechargeable battery; Temperature;
D O I
10.1016/j.jpowsour.2010.09.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For electric vehicles (EV) having a 500 km range between charges, there is a need to develop smaller and lower-cost batteries. Lithium-air has the potential to deliver a step change in the specific energy of rechargeable lithium batteries. In order to develop a practical, safe, smaller and lower-cost lithium and sodium-air rechargeable EV battery iris necessary to eliminate the formation of dendritic deposits (on charge), increase the current density up to 100 mA cm(-2) (or reducing cell DC resistance to less than 10 Omega cm(2)) and change the oxygen-discharge product from peroxide to oxide. We suggest here a novel concept, namely to replace the metallic lithium anode by liquid sodium and to operate the sodium-oxygen cell above the sodium melting point (97.8 degrees C). In this report we studied the deposition-dissolution process of sodium in polymer electrolytes at 105 degrees C and we present, for the first time, preliminary results that demonstrate the feasibility of running a liquid-sodium-oxygen cell with polymer electrolytes at above 100 degrees C. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:6835 / 6840
页数:6
相关论文
共 17 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]  
[Anonymous], 1992, ASM HDB
[3]  
Blum A., 2003, J POWER SOURCES, V5449, P1
[4]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[5]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[6]   Host-guest interactions in single-ion lithium polymer electrolyte [J].
Golodnitsky, D. ;
Kovarsky, R. ;
Mazor, H. ;
Rosenberg, Yu. ;
Lapides, I. ;
Peled, E. ;
Wieczorek, W. ;
Plewa, A. ;
Siekierski, M. ;
Kalita, M. ;
Settimi, L. ;
Scrosati, B. ;
Scanlon, L. G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (06) :A547-A553
[7]  
Gray F.M., 1991, SOLID POLYM ELECTROL
[8]   A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery [J].
Kumar, Binod ;
Kumar, Jitendra ;
Leese, Robert ;
Fellner, Joseph P. ;
Rodrigues, Stanley J. ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) :A50-A54
[9]   Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications [J].
Laoire, Cormac O. ;
Mukerjee, Sanjeev ;
Abraham, K. M. ;
Plichta, Edward J. ;
Hendrickson, Mary A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (46) :20127-20134
[10]   Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications [J].
Menkin, S. ;
Golodnitsky, D. ;
Peled, E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (09) :1789-1791