Evolved physiological responses of phytoplankton to their integrated growth environment

被引:172
作者
Behrenfeld, Michael J. [1 ]
Halsey, Kimberly H. [1 ]
Milligan, Allen J. [1 ]
机构
[1] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA
关键词
phytoplankton; photosynthesis; carbon fixation; nutrients; climate;
D O I
10.1098/rstb.2008.0019
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phytoplankton growth and productivity relies on light, multiple nutrients and temperature. These combined factors constitute the 'integrated growth environment'. Since their emergence in the Archaean ocean, phytoplankton have experienced dramatic shifts in their integrated growth environment and, in response, evolved diverse mechanisms to maximize growth by optimizing the allocation of photosynthetic resources ( ATP and NADPH) among all cellular processes. Consequently, co-limitation has become an omnipresent condition in the global ocean. Here we focus on evolved phytoplankton populations of the contemporary ocean and the varied energetic pathways they employ to solve the optimization problem of resource supply and demand. Central to this discussion is the allocation of reductant formed through photosynthesis, which we propose has the following three primary fates: carbon fixation, direct use and ATP generation. Investment of reductant among these three sinks is tied to cell cycle events, differentially influenced by specific forms of nutrient stress, and a strong determinant of relationships between light-harvesting ( pigment), photosynthetic electron transport and carbon fixation. Global implications of optimization are illustrated by deconvolving trends in the 10-year global satellite chlorophyll record into contributions from biomass and physiology, thereby providing a unique perspective on the dynamic nature of surface phytoplankton populations and their link to climate.
引用
收藏
页码:2687 / 2703
页数:17
相关论文
共 97 条
[1]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[2]   The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae [J].
Badger, MR ;
Andrews, TJ ;
Whitney, SM ;
Ludwig, M ;
Yellowlees, DC ;
Leggat, W ;
Price, GD .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1998, 76 (06) :1052-1071
[3]   CO2 concentrating mechanisms in cyanobacteria:: molecular components, their diversity and evolution [J].
Badger, MR ;
Price, GD .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (383) :609-622
[4]  
BAILEY S, BIOCH BIOPH IN PRESS
[5]   Climate-driven trends in contemporary ocean productivity [J].
Behrenfeld, Michael J. ;
O'Malley, Robert T. ;
Siegel, David A. ;
McClain, Charles R. ;
Sarmiento, Jorge L. ;
Feldman, Gene C. ;
Milligan, Allen J. ;
Falkowski, Paul G. ;
Letelier, Ricardo M. ;
Boss, Emmanuel S. .
NATURE, 2006, 444 (7120) :752-755
[6]   Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics [J].
Behrenfeld, Michael J. ;
Worthington, Kirby ;
Sherrell, Robert M. ;
Chavez, Francisco P. ;
Strutton, Peter ;
McPhaden, Michael ;
Shea, Donald M. .
NATURE, 2006, 442 (7106) :1025-1028
[7]   Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition [J].
Behrenfeld, MJ ;
Prasil, O ;
Kolber, ZS ;
Babin, M ;
Falkowski, PG .
PHOTOSYNTHESIS RESEARCH, 1998, 58 (03) :259-268
[8]   Photosynthetic rates derived from satellite-based chlorophyll concentration [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (01) :1-20
[9]   Carbon-based ocean productivity and phytoplankton physiology from space [J].
Behrenfeld, MJ ;
Boss, E ;
Siegel, DA ;
Shea, DM .
GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (01) :1-14
[10]   In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis [J].
Behrenfeld, MJ ;
Prasil, O ;
Babin, M ;
Bruyant, F .
JOURNAL OF PHYCOLOGY, 2004, 40 (01) :4-25