Estimating the tail-dependence coefficient: Properties and pitfalls

被引:225
作者
Frahm, G [1 ]
Junker, M
Schmidt, R
机构
[1] Res Ctr Caesar, Dept Financial Engn, D-53175 Bonn, Germany
[2] Univ Cologne, Dept Econ & Social Stat, D-50923 Cologne, Germany
[3] London Sch Econ, Dept Stat, London WC2A 2AE, England
关键词
tail dependence; tail-dependence coefficient; copula; extreme value theory; estimation; simulation;
D O I
10.1016/j.insmatheco.2005.05.008
中图分类号
F [经济];
学科分类号
02 ;
摘要
The concept of tail dependence describes the amount of dependence in the lower-left-quadrant tail or upper-right-quadrant tail of a bivariate distribution. A common measure of tail dependence is given by the so-called tail-dependence coefficient. This paper surveys various estimators for the tail-dependence coefficient within a parametric, semiparametric, and nonparametric framework. Further, a detailed simulation study is provided which compares and illustrates the advantages and disadvantages of the estimators. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:80 / 100
页数:21
相关论文
共 55 条
  • [1] ABDOUS B, 2005, STAT MODELING ANAL C, P1
  • [2] ABDOUS B, 1998, EXTREMES, V2, P245
  • [3] Dependence structure and risk measure
    Ané, T
    Kharoubi, C
    [J]. JOURNAL OF BUSINESS, 2003, 76 (03) : 411 - 438
  • [4] Bingham N. H., 1989, Encyclopedia of Mathematics and Its Applications, V27
  • [5] A semi-parametric approach to risk management
    Bingham, NH
    Kiesel, R
    Schmidt, R
    [J]. QUANTITATIVE FINANCE, 2003, 3 (06) : 426 - 441
  • [6] A nonparametric estimation procedure for bivariate extreme value copulas
    Caperaa, P
    Fougeres, AL
    Genest, C
    [J]. BIOMETRIKA, 1997, 84 (03) : 567 - 577
  • [7] Bivariate distributions with given extreme value attractor
    Capéraà, P
    Fougères, AL
    Genest, C
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2000, 72 (01) : 30 - 49
  • [8] Casella G., 2002, STAT INFERENCE
  • [9] CHEN X, 2003, 48 FMGIAM
  • [10] Coles S., 1999, EXTREMES, V2, P339, DOI [10.1023/A:1009963131610, DOI 10.1023/A:1009963131610]