Weakly pinned random walk on the wall: pathwise descriptions of the phase transition

被引:25
作者
Isozaki, Y
Yoshida, N
机构
[1] Kyoto Univ, Grad Sch Sci, Dept Math, Kyoto 6068502, Japan
[2] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
random walk; weak pinning; wall condition; entropic repulsion; wetting transition; limit theorems;
D O I
10.1016/S0304-4149(01)00118-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a one-dimensional random walk which is conditioned to stay non-negative and is "weakly pinned" to zero. This model is known to exhibit a phase transition as the strength of the weak pinning varies. We prove path space limit theorems which describe the macroscopic shape of the path for all values of the pinning strength. If the pinning is less than (resp. equal to) the critical strength, then the limit process is the Brownian meander (resp. reflecting Brownian motion). If the pinning strength is supercritical, then the limit process is a positively recurrent Markov chain with a strong mixing property. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:261 / 284
页数:24
相关论文
共 17 条
[1]   INVARIANCE PRINCIPLE FOR CONDITIONED RECURRENT RANDOM-WALK ATTRACTED TO A STABLE LAW [J].
BELKIN, B .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 21 (01) :45-&
[2]   UNIFORMITY IN WEAK CONVERGENCE [J].
BILLINGS.P ;
TOPSOE, F .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (01) :1-&
[3]   Absence of a wetting transition for a pinned harmonic crystal in dimensions three and larger [J].
Bolthausen, E ;
Deuschel, JD ;
Zeitouni, O .
JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (03) :1211-1223
[4]  
BOLTHAUSEN E, 1999, LECT DEL 3 BRAZ SCH
[5]   LOCALIZATION-DELOCALIZATION TRANSITION IN A SOLID-ON-SOLID MODEL WITH A PINNING POTENTIAL [J].
BURKHARDT, TW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (03) :L63-L68
[6]   A note on wetting transition for gradient fields [J].
Caputo, P ;
Velenik, Y .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 87 (01) :107-113
[7]   THE PINNING OF AN INTERFACE BY A PLANAR DEFECT [J].
CHALKER, JT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (09) :L481-L485
[8]   Non-Gaussian surface pinned by a weak potential [J].
Deuschel, JD ;
Velenik, Y .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (03) :359-377
[9]   PINNING OF AN INTERFACE BY A WEAK POTENTIAL [J].
DUNLOP, F ;
MAGNEN, J ;
RIVASSEAU, V ;
ROCHE, P .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (1-2) :71-98
[10]  
Feller W., 1970, INTRO PROBABILITY TH, V2