The tangled web of self-tying knots

被引:8
作者
Belmonte, Andrew [1 ]
机构
[1] Penn State Univ, Dept Math, WG Pritchard Labs, University Pk, PA 16802 USA
关键词
D O I
10.1073/pnas.0708150104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:17243 / 17244
页数:2
相关论文
共 20 条
[1]  
Adams C., 1994, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
[2]   Dynamic patterns and self-knotting of a driven hanging chain [J].
Belmonte, A ;
Shelley, MJ ;
Eldakar, ST ;
Wiggins, CH .
PHYSICAL REVIEW LETTERS, 2001, 87 (11)
[3]  
BELMONTE A, 2005, SERIES KNOTS EVERYTH, V36, pCH4
[4]   Knots and random walks in vibrated granular chains [J].
Ben-Naim, E ;
Daya, ZA ;
Vorobieff, P ;
Ecke, RE .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1414-1417
[5]  
Calvo JA, 2005, SER KNOTS EVERYTHING, V36, pVII
[6]  
GORIELY A, 2005, SERIES KNOTS EVERYTH, V36, pCH6
[7]   Knotting probability of a shaken ball-chain [J].
Hickford, J. ;
Jones, R. ;
du Pont, S. Courrech ;
Eggers, J. .
PHYSICAL REVIEW E, 2006, 74 (05)
[8]   Mechanical tweezer action by self-tightening knots in surfactant nanotubes [J].
Lobovkina, T ;
Dommersnes, P ;
Joanny, JF ;
Bassereau, P ;
Karlsson, M ;
Orwar, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (21) :7949-7953
[9]   ROPES IN EQUILIBRIUM [J].
MADDOCKS, JH ;
KELLER, JB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (06) :1185-1200
[10]   Equilibrium shapes of flat knots [J].
Metzler, R ;
Hanke, A ;
Dommersnes, PG ;
Kantor, Y ;
Kardar, M .
PHYSICAL REVIEW LETTERS, 2002, 88 (18) :4-188101