Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in Transgenic mice

被引:450
作者
Hua, Yimin [1 ]
Vickers, Timothy A. [2 ]
Okunola, Hazeem L. [1 ]
Bennett, C. Frank [2 ]
Krainer, Adrian R. [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] ISIS Pharmaceut, Carlsbad, CA 92008 USA
关键词
D O I
10.1016/j.ajhg.2008.01.014
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
survival of motor neuron 2, centromeric (SMN2) is a gene that modifies the severity of spinal muscular atrophy (SMA), a motor-neuron disease that is the leading genetic cause of infant mortality. Increasing inclusion of SMN2 exon 7, which is predominantly skipped, holds promise to treat or possibly cure SMA; one practical strategy is the disruption of splicing silencers that impair exon 7 recognition. By using an antisense oligonucleotide (ASO)-tiling method, we systematically screened the proximal intronic regions flanking exon 7 and identified two intronic splicing silencers (ISSs): one in intron 6 and a recently described one in intron 7. We analyzed the intron 7 ISS by mutagenesis, coupled with splicing assays, RNA-affinity chromatography, and protein overexpression, and found two tandem hnRNP A1/A2 motifs within the ISS that are responsible for its inhibitory character. Mutations in these two motifs, or ASOs that block them, promote very efficient exon 7 inclusion. We screened 31 ASOs in this region and selected two optimal ones to test in human SMN2 transgenic mice. Both ASOs strongly increased hSMN2 exon 7 inclusion in the liver and kidney of the transgenic animals. Our results show that the high-resolution ASO-tiling approach can identify cis-elements that modulate splicing positively or negatively. Most importantly, our results highlight the therapeutic potential of some of these ASOs in the context of SMA.
引用
收藏
页码:834 / 848
页数:15
相关论文
共 77 条
[1]   hnRNP A1 binds promiscuously to oligoribonucleotides: Utilization of random and homo-oligonucleotides to discriminate sequence from base-specific binding [J].
AbdulManan, N ;
Williams, KR .
NUCLEIC ACIDS RESEARCH, 1996, 24 (20) :4063-4070
[2]   Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology [J].
Alter, J ;
Lou, F ;
Rabinowitz, A ;
Yin, HF ;
Rosenfeld, J ;
Wilton, SD ;
Partridge, TA ;
Lu, QL .
NATURE MEDICINE, 2006, 12 (02) :175-177
[3]   Exon silencing by UAGG motifs in response to neuronal excitation [J].
An, Ping ;
Grabowski, Paula J. .
PLOS BIOLOGY, 2007, 5 (02) :263-280
[4]   Sequence-specific binding of single-stranded RNA: is there a code for recognition? [J].
Auweter, Sigrid D. ;
Oberstrass, Florian C. ;
Allain, Frederic H. -T. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (17) :4943-4959
[5]   2'-O-(2-methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells [J].
Baker, BF ;
Lot, SS ;
Condon, TP ;
ChengFlournoy, S ;
Lesnik, EA ;
Sasmor, HM ;
Bennett, CF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (18) :11994-12000
[6]   The SMN complex: An assembly machine for RNPs [J].
Battle, D. J. ;
Kasim, M. ;
Yong, J. ;
Lotti, F. ;
Lau, C.-K. ;
Mouaikel, J. ;
Zhang, Z. ;
Han, K. ;
Wan, L. ;
Dreyfuss, G. .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 2006, 71 :313-320
[7]   RNA splicing at human immunodeficiency virus type 1 3′ splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element [J].
Bilodeau, PS ;
Domsic, JK ;
Mayeda, A ;
Krainer, AR ;
Stoltzfus, CM .
JOURNAL OF VIROLOGY, 2001, 75 (18) :8487-8497
[8]   Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization [J].
Blanchette, M ;
Chabot, B .
EMBO JOURNAL, 1999, 18 (07) :1939-1952
[9]   Allosteric cascade of spliceosome activation [J].
Brow, DA .
ANNUAL REVIEW OF GENETICS, 2002, 36 :333-360
[10]   TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail - An important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing [J].
Buratti, E ;
Brindisi, A ;
Giombi, M ;
Tisminetzky, S ;
Ayala, YM ;
Baralle, FE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (45) :37572-37584