This study investigated the sensitivity of streamflow to changes in climate and glacier cover for the Bridge River basin, British Columbia, using a semi-distributed conceptual hydrological model coupled with a glacier response model. Mass balance data were used to constrain model parameters. Climate scenarios included a continuation of the current climate and two transient GCM scenarios with greenhouse gas forcing. Modelled glacier mass balance was used to re-scale the glacier every decade using a volume-area scaling relation. Glacier area and summer streamflow declined strongly even under the steady-climate scenario, with the glacier retreating to a new equilibrium within 100 years. For the warming scenarios, glacier retreat continued with no evidence of reaching a new equilibrium. Uncertainty in parameters governing glacier melt produced uncertainty in future glacier retreat and streamflow response. Where mass balance information is not available to assist with calibration, model-generated future scenarios will be subject to significant uncertainty.