Phylogenetic biochemical evidence for sterol synthesis in the bacterium Gemmata obsuriglobus

被引:178
作者
Pearson, A
Budin, M
Brocks, JJ
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1073/pnas.2536559100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sterol biosynthesis is viewed primarily as a eukaryotic process, and the frequency of its occurrence in bacteria has long been a subject of controversy. Two enzymes, squalene monooxygenase and oxidosqualene cyclase, are the minimum necessary for initial biosynthesis of sterols from squalene. In this work; 19 protein gene sequences for eukaryotic squalene monooxygenase and 12 protein gene sequences for eukaryotic oxidosqualene cyclase were compared with all available complete and partial prokaryotic genomes. The only unequivocal matches for a sterol biosynthetic pathway were in the proteobacterium, Methylococcus capsulatus, in which sterol biosynthesis is known, and in the planctomycete, Gemmata obscuriglobus. The latter species contains the most abbreviated sterol pathway yet identified in any organism. Analysis shows that the major sterols in Gemmata are lanosterol and its uncommon isomer, parkeol. There are no subsequent modifications of these products. In bacteria, the sterol biosynthesis genes occupy a contiguous coding region and possibly comprise a single operon. Phylogenetic trees constructed for both enzymes show that the sterol pathway in bacteria and eukaryotes has a common ancestry. It is likely that this contiguous reading frame was exchanged between bacteria and early eukaryotes via lateral gene transfer or endosymbiotic events. The primitive sterols produced by Gemmata suggest that this genus could retain the most ancient remnants of the sterol biosynthetic pathway.
引用
收藏
页码:15352 / 15357
页数:6
相关论文
共 29 条
[1]   STEROIDS AND SQUALENE IN METHYLOCOCCUS-CAPSULATUS GROWN ON METHANE [J].
BIRD, CW ;
LYNCH, JM ;
PIRT, FJ ;
REID, WW ;
BROOKS, CJW ;
MIDDLEDITCH, BS .
NATURE, 1971, 230 (5294) :473-+
[2]   Steroid biosynthesis in prokaryotes:: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca [J].
Bode, HB ;
Zeggel, B ;
Silakowski, B ;
Wenzel, SC ;
Reichenbach, H ;
Müller, R .
MOLECULAR MICROBIOLOGY, 2003, 47 (02) :471-481
[3]   The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways [J].
Boucher, Y ;
Doolittle, WF .
MOLECULAR MICROBIOLOGY, 2000, 37 (04) :703-716
[4]   Phylogeny - A non-hyperthermophilic ancestor for bacteria [J].
Brochier, C ;
Philippe, H .
NATURE, 2002, 417 (6886) :244-244
[5]   Archean molecular fossils and the early rise of eukaryotes [J].
Brocks, JJ ;
Logan, GA ;
Buick, R ;
Summons, RE .
SCIENCE, 1999, 285 (5430) :1033-1036
[6]   Linearly concatenated cyclobutane lipids form a dense bacterial membrane [J].
Damsté, JSS ;
Strous, M ;
Rijpstra, WIC ;
Hopmans, EC ;
Geenevasen, JAJ ;
van Duin, ACT ;
van Niftrik, LA ;
Jetten, MSM .
NATURE, 2002, 419 (6908) :708-712
[7]   STEROLS - ISOLATION FROM A BLUE-GREEN ALGA [J].
DESOUZA, NJ ;
NES, WR .
SCIENCE, 1968, 162 (3851) :363-&
[8]  
Doolittle WE, 1998, TRENDS GENET, V14, P307
[9]   MEMBRANE-BOUNDED NUCLEOID IN THE EUBACTERIUM GEMMATA-OBSCURIGLOBUS [J].
FUERST, JA ;
WEBB, RI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (18) :8184-8188
[10]   Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. An isoleucine-to-valine mutation in cycloartenol synthase allows lanosterol and parkeol biosynthesis [J].
Hart, EA ;
Hua, L ;
Darr, LB ;
Wilson, WK ;
Pang, JH ;
Matsuda, SPT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (42) :9887-9888