Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane

被引:522
作者
Cudazzo, Pierluigi [1 ,2 ,3 ]
Tokatly, Ilya V. [1 ,2 ,3 ,4 ]
Rubio, Angel [1 ,2 ,3 ,5 ]
机构
[1] Univ Pais Vasco Euskal Herriko Unibertsitatea, Ctr Fis Mat CSIC UPV EHU MPC, Nanobio Spect Grp, E-20018 San Sebastian, Spain
[2] Univ Pais Vasco Euskal Herriko Unibertsitatea, Ctr Fis Mat CSIC UPV EHU MPC, ETSF, Sci Dev Ctr,Dept Fis Mat, E-20018 San Sebastian, Spain
[3] DIPC, E-20018 San Sebastian, Spain
[4] IKERBASQUE Basque Fdn Sci, E-48011 Bilbao, Spain
[5] Fritz Haber Inst Max Planck Gesell, Theory Dept, D-14195 Berlin, Germany
关键词
ELECTRONIC-PROPERTIES; GRAPHENE; CARBON;
D O I
10.1103/PhysRevB.84.085406
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
For atomic thin layer insulating materials we provide an exact analytic form of the two-dimensional (2D) screened potential. In contrast to three-dimensional systems where the macroscopic screening can be described by a static dielectric constant, in 2D systems the macroscopic screening is nonlocal (q dependent) showing a logarithmic divergence for small distances and reaching the unscreened Coulomb potential for large distances. The crossover of these two regimes is dictated by 2D layer polarizability that can be easily computed by standard first-principles techniques. The present results have strong implications for describing gap-impurity levels and also exciton binding energies. The simple model derived here captures the main physical effects and reproduces well, for the case of graphane, the full many-body GW plus Bethe-Salpeter calculations. As an additional outcome we show that the impurity hole-doping in graphane leads to strongly localized states, which hampers applications in electronic devices. In spite of the inefficient and nonlocal two-dimensional macroscopic screening we demonstrate that a simple k . p approach is capable to describe the electronic and transport properties of confined 2D systems.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Colloquium:: Metallic behavior and related phenomena in two dimensions [J].
Abrahams, E ;
Kravchenko, SV ;
Sarachik, MP .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :251-266
[2]  
Abramowitz M., 2013, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, V(eds)
[3]   ELECTRONIC-PROPERTIES OF TWO-DIMENSIONAL SYSTEMS [J].
ANDO, T ;
FOWLER, AB ;
STERN, F .
REVIEWS OF MODERN PHYSICS, 1982, 54 (02) :437-672
[4]  
BARASHEVICH J, 2010, NANOTECHNOLOGY, V21, P55201
[5]  
Bassani G. F., 1975, Electronic States and Optical Transitions in Solids, V1st
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Reversible fluorination of graphene: Evidence of a two-dimensional wide bandgap semiconductor [J].
Cheng, S. -H. ;
Zou, K. ;
Okino, F. ;
Gutierrez, H. R. ;
Gupta, A. ;
Shen, N. ;
Eklund, P. C. ;
Sofo, J. O. ;
Zhu, J. .
PHYSICAL REVIEW B, 2010, 81 (20)
[8]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[9]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[10]   Strong Charge-Transfer Excitonic Effects and the Bose-Einstein Exciton Condensate in Graphane [J].
Cudazzo, Pierluigi ;
Attaccalite, Claudio ;
Tokatly, Ilya V. ;
Rubio, Angel .
PHYSICAL REVIEW LETTERS, 2010, 104 (22)