A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis

被引:545
作者
Yoshikawa, M [1 ]
Peragine, A [1 ]
Park, MY [1 ]
Poethig, RS [1 ]
机构
[1] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
关键词
PTGS; RNAi; miRNA; trans-acting siRNAs;
D O I
10.1101/gad.1352605
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Arabidopsis genes, TAS2 and TAS1a, produce structurally similar noncoding transcripts that are transformed into short (21-nucleotide [nt]) and long (24-nt) siRNAs by RNA silencing pathways. Some of these short siRNAs direct the cleavage of protein-coding transcripts, and thus function as trans-acting siRNAs (ta-siRNAs). Using genetic analysis, we defined the pathway by which ta-siRNAs and other short siRNAs are generated from these loci. This process is initiated by the miR173-directed cleavage of a primary poly(A) transcript. The 3' fragment is then transformed into short siRNAs by the sequential activity of SGS3, RDR6, and DCL4: SGS3 stabilizes the fragment, RDR6 produces a complementary strand, and DCL4 cleaves the resulting double-stranded molecule into short siRNAs, starting at the end with the miR173 cleavage site and proceeding in 21-nt increments from this point. The 5' cleavage fragment is also processed by this pathway, but less efficiently. The DCL3-dependent pathway that generates long siRNAs does not require miRNA-directed cleavage and plays a minor role in the silencing of these loci. Our results define the core components of a post-transcriptional gene silencing pathway in Arabidopsis and reveal some of the features that direct transcripts to this pathway.
引用
收藏
页码:2164 / 2175
页数:12
相关论文
共 68 条
[1]  
Allen E, 2005, CELL, V121, P207, DOI 10.1016/j.cell.2005.04.004
[2]   Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana [J].
Allen, E ;
Xie, ZX ;
Gustafson, AM ;
Sung, GH ;
Spatafora, JW ;
Carrington, JC .
NATURE GENETICS, 2004, 36 (12) :1282-1290
[3]   MicroRNAs and other tiny endogenous RNAs in C-elegans [J].
Ambros, V ;
Lee, RC ;
Lavanway, A ;
Williams, PT ;
Jewell, D .
CURRENT BIOLOGY, 2003, 13 (10) :807-818
[4]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[5]   The small RNA profile during Drosophila melanogaster development [J].
Aravin, AA ;
Lagos-Quintana, M ;
Yalcin, A ;
Zavolan, M ;
Marks, D ;
Snyder, B ;
Gaasterland, T ;
Meyer, J ;
Tuschl, T .
DEVELOPMENTAL CELL, 2003, 5 (02) :337-350
[6]   Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D-melanogaster germline [J].
Aravin, AA ;
Naumova, NM ;
Tulin, AV ;
Vagin, VV ;
Rozovsky, YM ;
Gvozdev, VA .
CURRENT BIOLOGY, 2001, 11 (13) :1017-1027
[7]   MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome [J].
Bao, N ;
Lye, KW ;
Barton, MK .
DEVELOPMENTAL CELL, 2004, 7 (05) :653-662
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   The SGS3 protein involved in PTGS finds a family [J].
Bateman, A .
BMC BIOINFORMATICS, 2002, 3 (1)
[10]   A branched pathway for transgene-induced RNA silencing in plants [J].
Béclin, C ;
Boutet, S ;
Waterhouse, P ;
Vaucheret, H .
CURRENT BIOLOGY, 2002, 12 (08) :684-688