Multiscale Computer Simulation of the Immature HIV-1 Virion

被引:64
作者
Ayton, Gary S. [1 ,2 ]
Voth, Gregory A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Utah, Ctr Biophys Modeling & Simulat, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Biochem, Salt Lake City, UT USA
[3] Univ Chicago, James Franck Inst, Dept Chem, Chicago, IL 60637 USA
[4] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
TYPE-1 MATRIX PROTEIN; CAPSID PROTEIN; FORCE-FIELD; LARGE BIOMOLECULES; LIPID-BILAYER; MODEL; DOMAIN; MEMBRANE; DYNAMICS; PHASE;
D O I
10.1016/j.bpj.2010.08.018
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Multiscale computer simulations, employing a combination of experimental data and coarse-graining methods, are used to explore the structure of the immature HIV-1 virion. A coarse-grained (CG) representation is developed for the virion membrane shell and Gag polypeptides using molecular level information. Building on the results from electron cryotomography experiments, the simulations under certain conditions reveal the existence of an incomplete p6 hexameric lattice formed from hexameric bundles of the Gag CA domains. In particular, the formation and stability of the immature Gag lattice at the CG level requires enhanced interfacial interactions of the CA protein C-terminal domains (CTDs). An exact mapping of the CG representation back to the molecular level then allows for detailed atomistic molecular dynamics studies to confirm the existence of these enhanced CA(CTD) interactions and to probe their possible origin. The multiscale simulations further provide insight into potential CA(CTD) mutations that may disrupt or modify the Gag immature lattice assembly process in the immature HIV-1 virion.
引用
收藏
页码:2757 / 2765
页数:9
相关论文
共 44 条
[31]   The MARTINI force field: Coarse grained model for biomolecular simulations [J].
Marrink, Siewert J. ;
Risselada, H. Jelger ;
Yefimov, Serge ;
Tieleman, D. Peter ;
de Vries, Alex H. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (27) :7812-7824
[32]   3-DIMENSIONAL STRUCTURE OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 MATRIX PROTEIN [J].
MASSIAH, MA ;
STARICH, MR ;
PASCHALL, C ;
SUMMERS, MF ;
CHRISTENSEN, AM ;
SUNDQUIST, WI .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 244 (02) :198-223
[33]   The MARTINI coarse-grained force field: Extension to proteins [J].
Monticelli, Luca ;
Kandasamy, Senthil K. ;
Periole, Xavier ;
Larson, Ronald G. ;
Tieleman, D. Peter ;
Marrink, Siewert-Jan .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (05) :819-834
[34]   Retrovirus budding [J].
Morita, E ;
Sundquist, WI .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2004, 20 :395-425
[35]   The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models [J].
Noid, W. G. ;
Liu, Pu ;
Wang, Yanting ;
Chu, Jhih-Wei ;
Ayton, Gary S. ;
Izvekov, Sergei ;
Andersen, Hans C. ;
Voth, Gregory A. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (24)
[36]   The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models [J].
Noid, W. G. ;
Chu, Jhih-Wei ;
Ayton, Gary S. ;
Krishna, Vinod ;
Izvekov, Sergei ;
Voth, Gregory A. ;
Das, Avisek ;
Andersen, Hans C. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (24)
[37]   Efficient HIV-1 replication can occur in the absence of the viral matrix protein [J].
Reil, H ;
Bukovsky, AA ;
Gelderblom, HR ;
Göttlinger, HG .
EMBO JOURNAL, 1998, 17 (09) :2699-2708
[38]   Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly [J].
Saad, Jamil S. ;
Miller, Jaime ;
Tai, Janet ;
Kim, Andrew ;
Ghanam, Ruba H. ;
Summers, Michael F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (30) :11364-11369
[39]   An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase [J].
Schuler, LD ;
Daura, X ;
Van Gunsteren, WF .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2001, 22 (11) :1205-1218
[40]   Functional surfaces of the human immunodeficiency virus type 1 capsid protein [J].
von Schwedler, UK ;
Stray, KM ;
Garrus, JE ;
Sundquist, WI .
JOURNAL OF VIROLOGY, 2003, 77 (09) :5439-5450