miRNAMap 2.0: genomic maps of microRNAs in metazoan genomes

被引:209
作者
Hsu, Sheng-Da [1 ]
Chu, Chia-Huei [1 ]
Tsou, Ann-Ping [2 ]
Chen, Shu-Jen [3 ]
Chen, Hua-Chien [3 ]
Hsu, Paul Wei-Che [1 ]
Wong, Yung-Hao [1 ]
Chen, Yi-Hsuan [3 ]
Chen, Gian-Hung [3 ]
Huang, Hsien-Da [1 ,4 ,5 ]
机构
[1] Natl Chiao Tung Univ, Inst Bioinformat, Dept Biol Sci & Technol, Hsinchu 300, Taiwan
[2] Natl Yang Ming Univ, Inst Biotechnol Med, Taipei 112, Taiwan
[3] Chang Gung Univ, Mol Med Res Ctr, Tao Yuan 333, Taiwan
[4] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu 300, Taiwan
[5] Natl Chiao Tung Univ, Core Facil Struct Bioinformat, Hsinchu 300, Taiwan
关键词
D O I
10.1093/nar/gkm1012
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs (miRNAs) are small non-coding RNA molecules that can negatively regulate gene expression and thus control numerous cellular mechanisms. This work develops a resource, miRNAMap 2.0, for collecting experimentally verified microRNAs and experimentally verified miRNA target genes in human, mouse, rat and other metazoan genomes. Three computational tools, miRanda, RNAhybrid and TargetScan, were employed to identify miRNA targets in 3-UTR of genes as well as the known miRNA targets. Various criteria for filtering the putative miRNA targets are applied to reduce the false positive prediction rate of miRNA target sites. Additionally, miRNA expression profiles can provide valuable clues on the characteristics of miRNAs, including tissue specificity and differential expression in cancer/normal cell. Therefore, quantitative polymerase chain reaction experiments were performed to monitor the expression profiles of 224 human miRNAs in 18 major normal tissues in human. The negative correlation between the miRNA expression profile and the expression profiles of its target genes typically helps to elucidate the regulatory functions of the miRNA. The interface is also redesigned and enhanced. The miRNAMap 2.0 is now available at http://miRNAMap.mbc.nctu.edu.tw/.
引用
收藏
页码:D165 / D169
页数:5
相关论文
共 19 条
[1]   Gene expression omnibus: Microarray data storage, submission, retrieval, and analysis [J].
Barrett, Tanya ;
Edgar, Ron .
DNA MICROARRAYS, PART B: DATABASES AND STATISTICS, 2006, 411 :352-369
[2]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[3]   A statistical sampling algorithm for RNA secondary structure prediction [J].
Ding, Y ;
Lawrence, CE .
NUCLEIC ACIDS RESEARCH, 2003, 31 (24) :7280-7301
[4]  
Enright AJ, 2004, GENOME BIOL, V5
[5]   miRBase: microRNA sequences, targets and gene nomenclature [J].
Griffiths-Jones, Sam ;
Grocock, Russell J. ;
van Dongen, Stijn ;
Bateman, Alex ;
Enright, Anton J. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :D140-D144
[6]   Human MicroRNA targets [J].
John, B ;
Enright, AJ ;
Aravin, A ;
Tuschl, T ;
Sander, C ;
Marks, DS .
PLOS BIOLOGY, 2004, 2 (11) :1862-1879
[7]   Plant microRNAs and development [J].
Jover-Gil, S ;
Candela, H ;
Ponce, MR .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2005, 49 (5-6) :733-744
[8]   Genomics of microRNA [J].
Kim, VN ;
Nam, JW .
TRENDS IN GENETICS, 2006, 22 (03) :165-173
[9]   RNAhybrid:: microRNA target prediction easy, fast and flexible [J].
Krueger, Jan ;
Rehmsmeier, Marc .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W451-W454
[10]   The UCSC Genome Browser Database: Update 2007 [J].
Kuhn, R. M. ;
Karolchik, D. ;
Zweig, A. S. ;
Trumbower, H. ;
Thomas, D. J. ;
Thakkapallayil, A. ;
Sugnet, C. W. ;
Stanke, M. ;
Smith, K. E. ;
Siepel, A. ;
Rosenbloom, K. R. ;
Rhead, B. ;
Raney, B. J. ;
Pohl, A. ;
Pedersen, J. S. ;
Hsu, F. ;
Hinrichs, A. S. ;
Harte, R. A. ;
Diekhans, M. ;
Clawson, H. ;
Bejerano, G. ;
Barber, G. P. ;
Baertsch, R. ;
Haussler, D. ;
Kent, W. J. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D668-D673