Plant microRNAs and development

被引:41
作者
Jover-Gil, S
Candela, H
Ponce, MR
机构
[1] Univ Miguel Hernandez, Div Genet, Alicante 03202, Spain
[2] Univ Miguel Hernandez, Inst Bioingn, Alicante 03202, Spain
基金
中国国家自然科学基金;
关键词
microPNA; Arabidopsis; plant development;
D O I
10.1387/ijdb.052015sj
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
MicroRNAs (miRNAs) act as negative regulators of gene expression in eukaryotes, a discovery that has opened an expanding field of biological research. Plant miRNAs are known to repress gene expression posttranscriptionally, mainly by guiding cleavage but also by attenuating the translation of target transcripts. In addition, it has been shown that plant miRNAs can also act at the transcriptional level by directing the methylation of target chromosomal loci. Genetic and biochemical approaches are quickly broadening our knowledge of the biogenesis and function of plant miRNAs. Computational approaches have uncovered an unexpectedly large number of miRNAs and their targets in plants. The targets of plant miRNAs often belong to families of transcription factors involved in the control of developmental processes. We review the status of research in this dynamic field, summarizing recent advances in our understanding of the biogenesis and mechanism of action of plant miRNAs, as well as in the developmental processes they regulate.
引用
收藏
页码:733 / 744
页数:12
相关论文
共 153 条
[1]   The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs [J].
Abrahante, JE ;
Daul, AL ;
Li, M ;
Volk, ML ;
Tennessen, JM ;
Miller, EA ;
Rougvie, AE .
DEVELOPMENTAL CELL, 2003, 4 (05) :625-637
[2]   Modulation of floral development by a gibberellin-regulated microRNA [J].
Achard, P ;
Herr, A ;
Baulcombe, DC ;
Harberd, NP .
DEVELOPMENT, 2004, 131 (14) :3357-3365
[3]   Computational prediction of miRNAs in Arabidopsis thaliana [J].
Adai, A ;
Johnson, C ;
Mlotshwa, S ;
Archer-Evans, S ;
Manocha, V ;
Vance, V ;
Sundaresan, V .
GENOME RESEARCH, 2005, 15 (01) :78-91
[4]   Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant [J].
Aida, M ;
Ishida, T ;
Fukaki, H ;
Fujisawa, H ;
Tasaka, M .
PLANT CELL, 1997, 9 (06) :841-857
[5]   Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana [J].
Allen, E ;
Xie, ZX ;
Gustafson, AM ;
Sung, GH ;
Spatafora, JW ;
Carrington, JC .
NATURE GENETICS, 2004, 36 (12) :1282-1290
[6]   A HIERARCHY OF REGULATORY GENES CONTROLS A LARVA-TO-ADULT DEVELOPMENTAL SWITCH IN C-ELEGANS [J].
AMBROS, V .
CELL, 1989, 57 (01) :49-57
[7]   A uniform system for microRNA annotation [J].
Ambros, V ;
Bartel, B ;
Bartel, DP ;
Burge, CB ;
Carrington, JC ;
Chen, XM ;
Dreyfuss, G ;
Eddy, SR ;
Griffiths-Jones, S ;
Marshall, M ;
Matzke, M ;
Ruvkun, G ;
Tuschl, T .
RNA, 2003, 9 (03) :277-279
[8]   MicroRNAs and other tiny endogenous RNAs in C-elegans [J].
Ambros, V ;
Lee, RC ;
Lavanway, A ;
Williams, PT ;
Jewell, D .
CURRENT BIOLOGY, 2003, 13 (10) :807-818
[9]   The functions of animal microRNAs [J].
Ambros, V .
NATURE, 2004, 431 (7006) :350-355
[10]   TEMPORAL REGULATION OF LIN-14 BY THE ANTAGONISTIC ACTION OF 2 OTHER HETEROCHRONIC GENES, LIN-4 AND LIN-28 [J].
ARASU, P ;
WIGHTMAN, B ;
RUVKUN, G .
GENES & DEVELOPMENT, 1991, 5 (10) :1825-1833