Retrieval of linear optical functions from finite range spectra

被引:6
作者
Meneses, Domingos De Sousa [1 ,2 ]
Rousseau, Benoit [1 ]
Echegut, Patrick [1 ]
Simon, Patrick [1 ]
机构
[1] CNRS, CRMHT, F-45071 Orleans 2, France
[2] Polytech Orleans, F-45072 Orleans 2, France
关键词
infrared spectroscopy; IR spectroscopy; Kramers-Kronig relations; dielectric function model; optical functions;
D O I
10.1366/000370207783292163
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
There are many experimental situations in which infrared reflectivity spectra can be acquired only over a limited spectral range. It is therefore necessary to find computing procedures that allow the efficient analysis of such data. In this paper, we propose a new procedure labeled constrained finite range correction (CFRC) that can be advantageously substituted to multiply subtractive Kramers-Kronig relations. The constrained finite range correction is able to produce realistic results even when very little supplementary information is available. For semitransparent crystals, the hypothesis of the phase spectrum positiveness alone is often sufficient to compute satisfactory approximations of the optical functions. The efficiency of the new method is shown through the analysis of several synthetic and experimental spectra.
引用
收藏
页码:1390 / 1397
页数:8
相关论文
共 20 条
[1]   MODIFIED KRAMERS-KRONIG ANALYSIS OF OPTICAL SPECTRA [J].
AHRENKIEL, RK .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1971, 61 (12) :1651-+
[2]   Dispersion relations and phase retrieval in infrared reflection spectra analysis [J].
Brun, JF ;
Meneses, DD ;
Rousseau, B ;
Echegut, P .
APPLIED SPECTROSCOPY, 2001, 55 (06) :774-780
[3]   Analytic continuation, singular-value expansions, and Kramers-Kronig analysis [J].
Dienstfrey, A ;
Greengard, L .
INVERSE PROBLEMS, 2001, 17 (05) :1307-1320
[4]   Efficient dispersion relations for terahertz spectroscopy [J].
Gornov, E. ;
Peiponen, K. -E. ;
Svirko, Y. ;
Ino, Y. ;
Kuwata-Gonokami, M. .
APPLIED PHYSICS LETTERS, 2006, 89 (14)
[5]   Comparison of subtractive Kramers-Kronig analysis and maximum entropy model in resolving phase from finite spectral range reflectance data [J].
Gornov, Evgeny ;
Vartiainen, Erik M. ;
Peiponen, Kai-Erik .
APPLIED OPTICS, 2006, 45 (25) :6519-6524
[6]   Extrapolation of band-limited frequency data using an iterative Hilbert-transform method and its application for Fourier-transform phase-modulation fluorometry [J].
Iwata, Tetsuo ;
Shibata, Hironobu ;
Araki, Tsutomu .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2007, 18 (01) :288-294
[7]   Alternative approach to the derivation of dispersion relations for optical constants [J].
King, Frederick W. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (33) :10427-10435
[8]   Detection and correction of the misplacement error in terahertz spectroscopy by application of singly subtractive Kramers-Kronig relations [J].
Lucarini, V ;
Ino, Y ;
Peiponen, KE ;
Kuwata-Gonokami, M .
PHYSICAL REVIEW B, 2005, 72 (12)
[9]   Dispersion theory and sum rules in linear and nonlinear optics [J].
V. Lucarini ;
F. Bassani ;
K. E. Peiponen ;
J. J. Saarinen .
La Rivista del Nuovo Cimento, 2003, 26 (12) :1-120
[10]   Multiply subtractive Kramers-Kronig relations for arbitrary-order harmonic generation susceptibilities [J].
Lucarini, V ;
Saarinen, JJ ;
Peiponen, KE .
OPTICS COMMUNICATIONS, 2003, 218 (4-6) :409-414