Engineering metal-impurity nanodefects for low-cost solar cells

被引:148
作者
Buonassisi, T
Istratov, AA [1 ]
Marcus, MA
Lai, B
Cai, ZH
Heald, SM
Weber, ER
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Photon Source, Berkeley, CA 94720 USA
[4] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
D O I
10.1038/nmat1457
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the demand for high-quality solar-cell feedstock exceeds supply and drives prices upwards, cheaper but dirtier alternative feedstock materials are being developed(1-3). Successful use of these alternative feedstocks requires that one rigorously control the deleterious effects of the more abundant metallic impurities. In this study, we demonstrate how metal nanodefect engineering can be used to reduce the electrical activity of metallic impurities, resulting in dramatic enhancements of performance even in heavily contaminated solar-cell material. Highly sensitive synchrotron-based measurements(4,5) directly confirm that the spatial and size distributions of metal nanodefects regulate the minority-carrier diffusion length, a key parameter for determining the actual performance of solar-cell devices. By engineering the distributions of metal-impurity nanodefects in a controlled fashion, the minority-carrier diffusion length can be increased by up to a factor of four, indicating that the use of lower-quality feedstocks with proper controls may be a viable alternative to producing cost-effective solar cells.
引用
收藏
页码:676 / 679
页数:4
相关论文
共 27 条
[1]   Three-dimensional atomic-scale imaging of impurity segregation to line defects [J].
Blavette, D ;
Cadel, E ;
Fraczkiewicz, A ;
Menand, A .
SCIENCE, 1999, 286 (5448) :2317-2319
[2]   Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material [J].
Buonassisi, T ;
Marcus, MA ;
Istratov, AA ;
Heuer, M ;
Ciszek, TF ;
Lai, B ;
Cai, ZH ;
Weber, ER .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
[3]   Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current [J].
Buonassisi, T ;
Istratov, AA ;
Pickett, MD ;
Marcus, MA ;
Hahn, G ;
Riepe, S ;
Isenberg, J ;
Warta, W ;
Willeke, G ;
Ciszek, TF ;
Weber, ER .
APPLIED PHYSICS LETTERS, 2005, 87 (04)
[4]  
Cai Z, 2000, AIP CONF PROC, V521, P31, DOI 10.1063/1.1291754
[5]   IMPURITIES IN SILICON SOLAR-CELLS [J].
DAVIS, JR ;
ROHATGI, A ;
HOPKINS, RH ;
BLAIS, PD ;
RAICHOUDHURY, P ;
MCCORMICK, JR ;
MOLLENKOPF, HC .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1980, 27 (04) :677-687
[6]   Effect of Grain-Boundaries on the Solubility of Copper in Silicon [J].
Dorward, R. C. ;
Kirkaldy, J. S. .
JOURNAL OF MATERIALS SCIENCE, 1968, 3 (05) :502-506
[7]   Solar cell efficiency tables (Version 24) [J].
Green, MA ;
Emery, K ;
King, DL ;
Igari, S ;
Warta, W .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (05) :365-372
[8]  
HALL RB, 2000, Patent No. 6111191
[9]   Grain boundaries as reservoirs of incompatible elements in the Earth's mantle [J].
Hiraga, T ;
Anderson, IM ;
Kohlstedt, DL .
NATURE, 2004, 427 (6976) :699-703
[10]   Iron contamination in silicon technology [J].
Istratov, AA ;
Hieslmair, H ;
Weber, ER .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2000, 70 (05) :489-534