Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes

被引:104
作者
Vignali, M
Steger, DJ
Neely, KE
Workman, JL [1 ]
机构
[1] Penn State Univ, Howard Hughes Med Inst, Althouse Lab 306, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biochem & Mol Biol, Althouse Lab 306, University Pk, PA 16802 USA
关键词
chromatin; HATs; targeted acetylation; transcriptional regulation; yeast;
D O I
10.1093/emboj/19.11.2629
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We analyzed the targeting of histone acetyltransferase (HAT) complexes by DNA-binding activators during transcriptional activation and the resulting distribution of acetylated histones. An in vitro competition assay was developed to acetylate and transcribe a nucleosomal array template in the presence of excess non-specific chromatin, which mimics in vivo conditions. Stimulation of transcription from the nucleosomal array template under competitive conditions by the SAGA and NuA4 HAT complexes depended on the presence of the Gal4-VP16 activator, which recognizes sites in the promoter and directly interacts with these HATs, Importantly, the stimulation of transcription by SAGA and NuA4 depended on the presence of Gal4-VP16 during histone acetylation, and Gal4-VP16-bound nucleosomal templates were acetylated preferentially by SAGA and NuA4 relative to the competitor chromatin, While targeting of the SAGA complex led to H3 acetylation of promoter-proximal nucleosomes, targeting of the NuA4 complex led to a broader domain of H4 acetylation of >3 kbp. Thus, either promoter-proximal H3 acetylation by SAGA or broadly distributed acetylation of H4 by NuA4 activated transcription from chromatin templates.
引用
收藏
页码:2629 / 2640
页数:12
相关论文
共 54 条
[1]   NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p [J].
Allard, S ;
Utley, RT ;
Savard, J ;
Clarke, A ;
Grant, P ;
Brandl, CJ ;
Pillus, L ;
Workman, JL ;
Côté, J .
EMBO JOURNAL, 1999, 18 (18) :5108-5119
[2]   Interplay between chromatin modifying and remodeling complexes in transcriptional regulation [J].
Belotserkovskaya, R ;
Berger, SL .
CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 1999, 9 (3-4) :221-230
[3]   GENETIC ISOLATION OF ADA2 - A POTENTIAL TRANSCRIPTIONAL ADAPTER REQUIRED FOR FUNCTION OF CERTAIN ACIDIC ACTIVATION DOMAINS [J].
BERGER, SL ;
PINA, B ;
SILVERMAN, N ;
MARCUS, GA ;
AGAPITE, J ;
REGIER, JL ;
TRIEZENBERG, SJ ;
GUARENTE, L .
CELL, 1992, 70 (02) :251-265
[4]  
Braunstein M, 1996, MOL CELL BIOL, V16, P4349
[5]   The many HATs of transcription coactivators [J].
Brown, CE ;
Lechner, T ;
Howe, L ;
Workman, JL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (01) :15-19
[6]   Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo [J].
Candau, R ;
Zhou, JX ;
Allis, CD ;
Berger, SL .
EMBO JOURNAL, 1997, 16 (03) :555-565
[7]   Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter (Publication with Expression of Concern) [J].
Cosma, MP ;
Tanaka, TU ;
Nasmyth, K .
CELL, 1999, 97 (03) :299-311
[8]  
Cote J., 1995, METHODS MOL GENETICS, V6, P108
[9]   The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo [J].
Dudley, AM ;
Rougeulle, C ;
Winston, F .
GENES & DEVELOPMENT, 1999, 13 (22) :2940-2945
[10]  
Eberharter A, 1999, MOL CELL BIOL, V19, P6621