A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy

被引:62
作者
Rader, C
Turner, JM
Heine, A
Shabat, D
Sinha, SC
Wilson, IA
Lerner, RA
Barbas, CF
机构
[1] Scripps Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Dept Biol Mol, La Jolla, CA 92037 USA
关键词
catalytic antibody; aldolases; prodrug activation; chemical programming; antibody humanization;
D O I
10.1016/S0022-2836(03)00992-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mouse monoclonal antibody 38C2 is the prototype of a new class of catalytic antibodies that were generated by reactive immunization. Through a reactive lysine, 38C2 catalyzes aldol and retro-aldol reactions using the enamine mechanism of natural aldolases. In addition to its remarkable versatility and efficacy in synthetic organic chemistry, 38C2 has been used for the selective activation of prodrugs in vitro and in vivo and thereby emerged as a promising tool for selective chemotherapy. Adding another application with relevance for cancer therapy, designated adaptor immunotherapy, we have recently shown that 38C2 can be chemically programmed to target tumors by formation of a covalent bond of defined stoichiometry with a beta-diketone derivative of an integrin alpha(v)beta(3) targeting RGD peptidomimetic. However, a major limitation for the transition from preclinical to clinical evaluation is the human anti-mouse antibody immune response that mouse 38C2 is likely to elicit in a majority of patients after single administration. Here, we report the humanization of mouse 38C2 based on rational design guided by molecular modeling. In essence, the catalytic center of mouse 38C2, which encompasses a deep hydrophobic pocket with a reactive lysine residue at the bottom, was grafted into a human antibody framework. Humanized 38C2 IgG1 was found to bind to beta-diketone haptens with conserved affinities and revealed strong catalytic activity with identical k(cat) and slightly higher K-M values compared to the parental mouse antibody. Furthermore, humanized 38C2 IgG1 revealed efficiency in prodrug activation and chemical programming comparable to the parental mouse antibody. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:889 / 899
页数:11
相关论文
共 39 条
[1]   Phage display of a catalytic antibody to optimize affinity for transition-state analog binding [J].
Baca, M ;
Scanlan, TS ;
Stephenson, RC ;
Wells, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (19) :10063-10068
[2]  
Barbas 3rd C. F., 2001, PHAGE DISPLAY LAB MA
[3]   Immune versus natural selection: Antibody aldolases with enzymic rates but broader scope [J].
Barbas, CF ;
Heine, A ;
Zhong, GF ;
Hoffmann, T ;
Gramatikova, S ;
Bjornestedt, R ;
List, B ;
Anderson, J ;
Stura, EA ;
Wilson, IA ;
Lerner, RA .
SCIENCE, 1997, 278 (5346) :2085-2092
[4]   EFFICIENT NEUTRALIZATION OF PRIMARY ISOLATES OF HIV-1 BY A RECOMBINANT HUMAN MONOCLONAL-ANTIBODY [J].
BURTON, DR ;
PYATI, J ;
KODURI, R ;
SHARP, SJ ;
THORNTON, GB ;
PARREN, PWHI ;
SAWYER, LSW ;
HENDRY, RM ;
DUNLOP, N ;
NARA, PL ;
LAMACCHIA, M ;
GARRATTY, E ;
STIEHM, ER ;
BRYSON, YJ ;
CAO, YZ ;
MOORE, JP ;
HO, DD ;
BARBAS, CF .
SCIENCE, 1994, 266 (5187) :1024-1027
[5]   Improving the efficacy of antibody-based cancer therapies [J].
Carter, P .
NATURE REVIEWS CANCER, 2001, 1 (02) :118-129
[6]   HUMANIZATION OF AN ANTI-P185HER2 ANTIBODY FOR HUMAN CANCER-THERAPY [J].
CARTER, P ;
PRESTA, L ;
GORMAN, CM ;
RIDGWAY, JBB ;
HENNER, D ;
WONG, WLT ;
ROWLAND, AM ;
KOTTS, C ;
CARVER, ME ;
SHEPARD, HM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (10) :4285-4289
[7]   Design and production of novel tetravalent bispecific antibodies [J].
Coloma, MJ ;
Morrison, SL .
NATURE BIOTECHNOLOGY, 1997, 15 (02) :159-163
[8]   Analysis of heavy and light chain pairings indicates that receptor editing shapes the human antibody repertoire [J].
de Wildt, RMT ;
Hoet, RMA ;
van Venrooij, WJ ;
Tomlinson, IM ;
Winter, G .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (03) :895-901
[9]   Antibody arrays for high-throughput screening of antibody-antigen interactions [J].
de Wildt, RMT ;
Mundy, CR ;
Gorick, BD ;
Tomlinson, IM .
NATURE BIOTECHNOLOGY, 2000, 18 (09) :989-994
[10]   Development of a genetic selection for catalytic antibodies [J].
Gildersleeve, J ;
Janes, J ;
Ulrich, H ;
Yang, P ;
Barbas, C ;
Schultz, PG .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2002, 12 (12) :1691-1694