Regularity properties of a semismooth reformulation of variational inequalities

被引:42
作者
Facchinei, F
Fischer, A
Kanzow, C
机构
[1] Univ Rome La Sapienza, Dipartimento Informat & Sistemist, I-00185 Rome, Italy
[2] Univ Dortmund, Dept Math, D-44221 Dortmund, Germany
[3] Univ Hamburg, Inst Appl Math, D-20146 Hamburg, Germany
关键词
variational inequality problem; KKT conditions; strong regularity;
D O I
10.1137/S1052623496298194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variational inequalities over sets defined by systems of equalities and inequalities are considered. A new reformulation of the KKT conditions for the variational inequality as a system of equations is proposed. A related unconstrained minimization reformulation is also investigated. As a by-product of the analysis, a new characterization of strong regularity of KKT points is given.
引用
收藏
页码:850 / 869
页数:20
相关论文
共 33 条
[1]  
Bachem A., 1992, Linear programming duality
[2]   A pivotal method for affine variational inequalities [J].
Cao, ML ;
Ferris, MC .
MATHEMATICS OF OPERATIONS RESEARCH, 1996, 21 (01) :44-64
[3]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[4]  
COTTLE RW, 1992, LIENAR COMPLEMENTARI
[5]   A semismooth equation approach to the solution of nonlinear complementarity problems [J].
DeLuca, T ;
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1996, 75 (03) :407-439
[6]  
Dirkse Steven P., 1995, Optim. Methods Softw., V5, P123, DOI DOI 10.1080/10556789508805606
[7]  
Eaves B., 1971, Math. Program, V1, P68, DOI [10.1007/BF01584073, DOI 10.1007/BF01584073]
[8]  
Facchinei F, 1996, NONLINEAR OPTIMIZATION AND APPLICATIONS, P125
[9]   A new merit function for nonlinear complementarity problems and a related algorithm [J].
Facchinei, F ;
Soares, J .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (01) :225-247
[10]   A nonsmooth inexact Newton method for the solution of large-scale nonlinear complementarity problems [J].
Facchinei, F ;
Kanzow, C .
MATHEMATICAL PROGRAMMING, 1997, 76 (03) :493-512