Identification of PamA as a PII-binding membrane protein important in nitrogen-related and sugar-catabolic gene expression in Synechocystis sp PCC 6803

被引:48
作者
Osanai, T
Sato, S
Tabata, S
Tanaka, K
机构
[1] Univ Tokyo, Inst Mol & Cellular Biosci, Bunkyo Ku, Tokyo 1130032, Japan
[2] Kazusa DNA Res Inst, Chiba 2920818, Japan
关键词
D O I
10.1074/jbc.M507489200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The PII signaling protein plays a pivotal role in the coordination of carbon and nitrogen metabolism in a wide variety of bacteria, Archaea, and plant chloroplasts. By using a yeast two-hybrid screening system, we identified a transmembrane protein, designated PamA ( encoded by sll0985), as a PII-binding protein in Synechocystis sp. PCC 6803. The interaction between PII and PamA was confirmed in vitro, and the interaction was inhibited in the presence of ATP and 2-oxoglutarate, whereas the interaction was not influenced by the phosphorylation status of PII. Northern blot analyses revealed that the transcripts of a set of nitrogen-related genes, including nblA, nrtABCD, and ureG, were decreased in a pamA deletion mutant. The mRNA and protein levels of a group 2 sigma factor SigE were also reduced by the pamA mutation, and transcripts for sugar catabolic genes, such as gap1, zwf, and gnd that are under the control of SigE, were consequently decreased in the pamA mutant. In addition, the pamA mutant was found to be unable to grow in glucose-containing media. These results indicate that PamA has a role in the transcript control of genes for nitrogen and sugar metabolism in Synechocystis sp. PCC 6803.
引用
收藏
页码:34684 / 34690
页数:7
相关论文
共 40 条
[1]   Role of NtcB in activation of nitrate assimilation genes in the cyanobacterium Synechocystis sp strain PCC 6803 [J].
Aichi, M ;
Takatani, N ;
Omata, T .
JOURNAL OF BACTERIOLOGY, 2001, 183 (20) :5840-5847
[2]   Signal transduction protein PII is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942 [J].
Aldehni, MF ;
Sauer, J ;
Spielhaupter, C ;
Schmid, R ;
Forchhammer, K .
JOURNAL OF BACTERIOLOGY, 2003, 185 (08) :2582-2591
[3]   PII signal transduction proteins, pivotal players in microbial nitrogen control [J].
Arcondéguy, T ;
Jack, R ;
Merrick, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (01) :80-+
[4]   Interactions between the nitrogen signal tmnsduction protein PII and N-acetyl glutamate kinase in organisms that perform oxygenic photosynthesis [J].
Burillo, S ;
Luque, I ;
Fuentes, I ;
Contreras, A .
JOURNAL OF BACTERIOLOGY, 2004, 186 (11) :3346-3354
[5]   A SMALL POLYPEPTIDE TRIGGERS COMPLETE DEGRADATION OF LIGHT-HARVESTING PHYCOBILIPROTEINS IN NUTRIENT-DEPRIVED CYANOBACTERIA [J].
COLLIER, JL ;
GROSSMAN, AR .
EMBO JOURNAL, 1994, 13 (05) :1039-1047
[6]   Global carbon/nitrogen control by PII signal transduction in cyanobacteria:: from signals to targets [J].
Forchhammer, K .
FEMS MICROBIOLOGY REVIEWS, 2004, 28 (03) :319-333
[7]   Phosphoprotein P-II from cyanobacteria - Analysis of functional conservation with the P-II signal-transduction protein from Escherichia coli [J].
Forchhammer, K ;
Hedler, A .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 244 (03) :869-875
[8]   FUNCTIONAL-ANALYSIS OF THE PHOSPHOPROTEIN P-II (GLNB GENE-PRODUCT) IN THE CYANOBACTERIUM SYNECHOCOCCUS SP STRAIN PCC-7942 [J].
FORCHHAMMER, K ;
DEMARSAC, NT .
JOURNAL OF BACTERIOLOGY, 1995, 177 (08) :2033-2040
[9]   THE P-II PROTEIN IN THE CYANOBACTERIUM SYNECHOCOCCUS SP STRAIN PCC-7942 IS MODIFIED BY SERINE PHOSPHORYLATION AND SIGNALS THE CELLULAR N-STATUS [J].
FORCHHAMMER, K ;
DEMARSAC, NT .
JOURNAL OF BACTERIOLOGY, 1994, 176 (01) :84-91
[10]   The Synechococcus elongatus PII signal transduction protein controls arginine synthesis by complex formation with N-acetyl-L-glutamate kinase [J].
Heinrich, A ;
Maheswaran, M ;
Ruppert, U ;
Forchhammer, K .
MOLECULAR MICROBIOLOGY, 2004, 52 (05) :1303-1314