Benchmarking and Analysis of Protein Docking Performance in Rosetta v3.2

被引:246
作者
Chaudhury, Sidhartha [1 ]
Berrondo, Monica [2 ]
Weitzner, Brian D. [2 ]
Muthu, Pravin [2 ]
Bergman, Hannah [2 ]
Gray, Jeffrey J. [2 ]
机构
[1] Johns Hopkins Univ, Program Mol Biophys, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD USA
来源
PLOS ONE | 2011年 / 6卷 / 08期
基金
美国国家卫生研究院;
关键词
FERREDOXIN-NADP(+) REDUCTASE; BLIND PREDICTIONS;
D O I
10.1371/journal.pone.0022477
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RosettaDock has been increasingly used in protein docking and design strategies in order to predict the structure of protein-protein interfaces. Here we test capabilities of RosettaDock 3.2, part of the newly developed Rosetta v3.2 modeling suite, against Docking Benchmark 3.0, and compare it with RosettaDock v2.3, the latest version of the previous Rosetta software package. The benchmark contains a diverse set of 116 docking targets including 22 antibody-antigen complexes, 33 enzyme-inhibitor complexes, and 60 'other' complexes. These targets were further classified by expected docking difficulty into 84 rigid-body targets, 17 medium targets, and 14 difficult targets. We carried out local docking perturbations for each target, using the unbound structures when available, in both RosettaDock v2.3 and v3.2. Overall the performances of RosettaDock v2.3 and v3.2 were similar. RosettaDock v3.2 achieved 56 docking funnels, compared to 49 in v2.3. A breakdown of docking performance by protein complex type shows that RosettaDock v3.2 achieved docking funnels for 63% of antibody-antigen targets, 62% of enzyme-inhibitor targets, and 35% of 'other' targets. In terms of docking difficulty, RosettaDock v3.2 achieved funnels for 58% of rigid-body targets, 30% of medium targets, and 14% of difficult targets. For targets that failed, we carry out additional analyses to identify the cause of failure, which showed that binding-induced backbone conformation changes account for a majority of failures. We also present a bootstrap statistical analysis that quantifies the reliability of the stochastic docking results. Finally, we demonstrate the additional functionality available in RosettaDock v3.2 by incorporating small-molecules and non-protein co-factors in docking of a smaller target set. This study marks the most extensive benchmarking of the RosettaDock module to date and establishes a baseline for future research in protein interface modeling and structure prediction.
引用
收藏
页数:13
相关论文
共 35 条
[11]   CAPRI rounds 3-5 reveal promising successes and future challenges for RosettaDock [J].
Daily, MD ;
Masica, D ;
Sivasubramanian, A ;
Somarouthu, S ;
Gray, JJ .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (02) :181-186
[12]   ROSETTALIGAND Docking with Full Ligand and Receptor Flexibility [J].
Davis, Ian W. ;
Baker, David .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 385 (02) :381-392
[13]   HADDOCK: A protein-protein docking approach based on biochemical or biophysical information [J].
Dominguez, C ;
Boelens, R ;
Bonvin, AMJJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (07) :1731-1737
[14]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[15]   RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite [J].
Fleishman, Sarel J. ;
Leaver-Fay, Andrew ;
Corn, Jacob E. ;
Strauch, Eva-Maria ;
Khare, Sagar D. ;
Koga, Nobuyasu ;
Ashworth, Justin ;
Murphy, Paul ;
Richter, Florian ;
Lemmon, Gordon ;
Meiler, Jens ;
Baker, David .
PLOS ONE, 2011, 6 (06)
[16]   Rosetta in CAPRI rounds 13-19 [J].
Fleishman, Sarel J. ;
Corn, Jacob E. ;
Strauch, Eva M. ;
Whitehead, Tim A. ;
Andre, Ingemar ;
Thompson, James ;
Havranek, James J. ;
Das, Rhiju ;
Bradley, Philip ;
Baker, David .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2010, 78 (15) :3212-3218
[17]   Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations [J].
Gray, JJ ;
Moughon, S ;
Wang, C ;
Schueler-Furman, O ;
Kuhlman, B ;
Rohl, CA ;
Baker, D .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 331 (01) :281-299
[18]   Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+ [J].
Hermoso, JA ;
Mayoral, T ;
Faro, M ;
Gómez-Moreno, C ;
Sanz-Aparicio, J ;
Medina, M .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (05) :1133-1142
[19]   Protein-protein docking benchmark version 3.0 [J].
Hwang, Howook ;
Pierce, Brian ;
Mintseris, Julian ;
Janin, Joel ;
Weng, Zhiping .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 73 (03) :705-709
[20]  
Leaver-Fay A, 2011, METHOD ENZYMOL, P545, DOI [10.1016/B978-0-12-381270-4.00019-6, 10.1016/S0076-6879(11)87019-9]