Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation

被引:66
作者
Fabro, Georgina [1 ]
Di Rienzo, Julio A. [2 ]
Voigt, Christian A. [3 ]
Savchenko, Tatyana [4 ]
Dehesh, Katayoon [4 ]
Somerville, Shauna [3 ]
Alvarez, Maria Elena [1 ]
机构
[1] Univ Nacl Cordoba, Fac Ciencias Quim, CIQUIBIC CONICET, Dept Quim Biol, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, Fac Ciencias Agropecuarias, Catedra Estadist & Biometria, RA-5000 Cordoba, Argentina
[3] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[4] Univ Calif Davis, Plant Biol Sect, Davis, CA 95616 USA
关键词
D O I
10.1104/pp.107.111286
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Compatibility between plants and obligate biotrophic fungi requires fungal mechanisms for efficiently obtaining nutrients and counteracting plant defenses under conditions that are expected to induce changes in the host transcriptome. A key step in the proliferation of biotrophic fungi is haustorium differentiation. Here we analyzed global gene expression patterns in Arabidopsis thaliana leaves during the formation of haustoria by Golovinomyces cichoracearum. At this time, the endogenous levels of salicylic acid ( SA) and jasmonic acid (JA) were found to be enhanced. The responses of wild-type, npr1-1, and jar1-1 plants were used to categorize the sensitivity of gene expression changes to NPR1 and JAR1, which are components of the SA and JA signaling pathways, respectively. We found that the infection process was the major source of variation, with 70 genes identified as having similarly altered expression patterns regardless of plant genotype. In addition, principal component analysis (PCA) identified genes responding both to infection and to lack of functional JAR1 (17 genes) or NPR1 (18 genes), indicating that the JA and SA signaling pathways function as secondary sources of variation. Participation of these genes in the SA or JA pathways had not been described previously. We found that some of these genes may be sensitive to the balance between the SA and JA pathways, representing novel markers for the elucidation of cross-talk points between these signaling cascades. Conserved putative regulatory motifs were found in the promoter regions of each subset of genes. Collectively, our results indicate that gene expression changes in response to infection by obligate biotrophic fungi may support fungal nutrition by promoting alterations in host metabolism. In addition, these studies provide novel markers for the characterization of defense pathways and susceptibility features under this infection condition.
引用
收藏
页码:1421 / 1439
页数:19
相关论文
共 81 条
[11]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[12]   Identification of pathogenesis-related ESTs in the crucifer downy mildew oomycete Hyaloperonospora parasitica by high-throughput differential display analysis of distinct phenotypic interactions with Brassica oleracea [J].
Casimiro, Sandra ;
Tenreiro, Rogerio ;
Monteiro, Antonio A. .
JOURNAL OF MICROBIOLOGICAL METHODS, 2006, 66 (03) :466-478
[13]   Conserved requirement for a plant host cell protein in powdery mildew pathogenesis [J].
Consonni, Chiara ;
Humphry, Matthew E. ;
Hartmann, H. Andreas ;
Livaja, Maren ;
Durner, Jorg ;
Westphal, Lore ;
Vogel, John ;
Lipka, Volker ;
Kemmerling, Birgit ;
Schulze-Lefert, Paul ;
Somerville, Shauna C. ;
Panstruga, Ralph .
NATURE GENETICS, 2006, 38 (06) :716-720
[14]   Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack [J].
De Vos, M ;
Van Oosten, VR ;
Van Poecke, RMP ;
Van Pelt, JA ;
Pozo, MJ ;
Mueller, MJ ;
Buchala, AJ ;
Métraux, JP ;
Van Loon, LC ;
Dicke, M ;
Pieterse, CMJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2005, 18 (09) :923-937
[15]   Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen [J].
Dewdney, J ;
Reuber, TL ;
Wildermuth, MC ;
Devoto, A ;
Cui, JP ;
Stutius, LM ;
Drummond, EP ;
Ausubel, FM .
PLANT JOURNAL, 2000, 24 (02) :205-218
[16]   Trehalose metabolism: a regulatory role for trehalose-6-phosphate? [J].
Eastmond, PJ ;
Graham, IA .
CURRENT OPINION IN PLANT BIOLOGY, 2003, 6 (03) :231-235
[17]   Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase [J].
Eckey, C ;
Korell, M ;
Leib, K ;
Biedenkopf, D ;
Jansen, C ;
Langen, G ;
Kogel, KH .
PLANT MOLECULAR BIOLOGY, 2004, 55 (01) :1-15
[18]   Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae [J].
Ellis, C ;
Karafyllidis, L ;
Turner, JG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (10) :1025-1030
[19]   The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses [J].
Ellis, C ;
Karafyllidis, I ;
Wasternack, C ;
Turner, JG .
PLANT CELL, 2002, 14 (07) :1557-1566
[20]   The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens [J].
Ellis, C ;
Turner, JG .
PLANT CELL, 2001, 13 (05) :1025-1033