High-fidelity quantum gates in the presence of dispersion

被引:14
作者
Khani, B. [1 ,2 ]
Merkel, S. T. [1 ,2 ,3 ]
Motzoi, F. [1 ,2 ]
Gambetta, Jay M. [1 ,4 ]
Wilhelm, F. K. [1 ,2 ,3 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Saarland, DE-66123 Saarbrucken, Germany
[4] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
ATOMS; DESIGN; DYNAMICS; STATES;
D O I
10.1103/PhysRevA.85.022306
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We numerically demonstrate the control of motional degrees of freedom of an ensemble of neutral atoms in an optical lattice with a shallow trapping potential. Taking into account the range of quasimomenta across different Brillouin zones results in an ensemble whose members effectively have inhomogeneous control fields as well as spectrally distinct control Hamiltonians. We present an ensemble-averaged optimal control technique that yields high-fidelity control pulses, irrespective of quasimomentum, with average fidelities above 98%. The resulting controls show a broadband spectrum with gate times in the order of several free oscillations to optimize gates with up to 13.2% dispersion in the energies from the band structure. This can be seen as a model system for the prospects of robust quantum control. This result explores the limits of discretizing a continuous ensemble for control theory.
引用
收藏
页数:7
相关论文
共 50 条
[1]  
Ashcroft N., 2011, Solid State Physics
[2]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[3]   Quantum coherence and entanglement with ultracold atoms in optical lattices [J].
Bloch, Immanuel .
NATURE, 2008, 453 (7198) :1016-1022
[4]   Application of optimal control to CPMG refocusing pulse design [J].
Borneman, Troy W. ;
Huerlimann, Martin D. ;
Cory, David G. .
JOURNAL OF MAGNETIC RESONANCE, 2010, 207 (02) :220-233
[5]   Quantum logic gates in optical lattices [J].
Brennen, GK ;
Caves, CM ;
Jessen, PS ;
Deutsch, IH .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1060-1063
[6]  
Bryson A. E., 1975, APPL OPTIMAL CONTROL
[7]  
Bylander J, 2011, NAT PHYS, V7, P565, DOI [10.1038/NPHYS1994, 10.1038/nphys1994]
[8]   Quantum control landscapes [J].
Chakrabarti, Raj ;
Rabitz, Herschel .
INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 2007, 26 (04) :671-735
[9]  
Chen G., 2006, Quantum Computing Devices: Principles, Designs, and Analysis
[10]   Optimized driving of superconducting artificial atoms for improved single-qubit gates [J].
Chow, J. M. ;
DiCarlo, L. ;
Gambetta, J. M. ;
Motzoi, F. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2010, 82 (04)