Efficient probabilistic model personalization integrating uncertainty on data and parameters: Application to Eikonal-Diffusion models in cardiac electrophysiology

被引:66
作者
Konukoglu, Ender [1 ]
Relan, Jatin
Cilingir, Ulas [2 ]
Menze, Bjoern H. [3 ]
Chinchapatnam, Phani [4 ]
Jadidi, Amir [5 ]
Cochet, Hubert [5 ]
Hocini, Meleze [5 ]
Delingette, Herve
Jais, Pierre [5 ]
Haissaguerre, Michel [5 ]
Ayache, Nicholas
Sermesant, Maxime [4 ]
机构
[1] Microsoft Res Cambridge, Cambridge CB3 0FB, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England
[3] MIT, CSAII, Cambridge, MA 02139 USA
[4] Kings Coll London, St Thomas Hosp, London, England
[5] Bordeaux Univ Hosp, Bordeaux, France
关键词
Probabilistic inverse problems; Bayesian inference; PDE models; Polynomial chaos; Spectral representation; Cardiac electrophysiology; Model personalization; Eikonal models; Compressed sensing; SYSTEM; ABLATION; ERRORS;
D O I
10.1016/j.pbiomolbio.2011.07.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Biophysical models are increasingly used for medical applications at the organ scale. However, model predictions are rarely associated with a confidence measure although there are important sources of uncertainty in computational physiology methods. For instance, the sparsity and noise of the clinical data used to adjust the model parameters (personalization), and the difficulty in modeling accurately soft tissue physiology. The recent theoretical progresses in stochastic models make their use computationally tractable, but there is still a challenge in estimating patient-specific parameters with such models. In this work we propose an efficient Bayesian inference method for model personalization using polynomial chaos and compressed sensing. This method makes Bayesian inference feasible in real 3D modeling problems. We demonstrate our method on cardiac electrophysiology. We first present validation results on synthetic data, then we apply the proposed method to clinical data. We demonstrate how this can help in quantifying the impact of the data characteristics on the personalization (and thus prediction) results. Described method can be beneficial for the clinical use of personalized models as it explicitly takes into account the uncertainties on the data and the model parameters while still enabling simulations that can be used to optimize treatment. Such uncertainty handling can be pivotal for the proper use of modeling as a clinical tool, because there is a crucial requirement to know the confidence one can have in personalized models. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:134 / 146
页数:13
相关论文
共 38 条
[1]   Patient-specific modeling of dyssynchronous heart failure: A case study [J].
Aguado-Sierra, Jazmin ;
Krishnamurthy, Adarsh ;
Villongco, Christopher ;
Chuang, Joyce ;
Howard, Elliot ;
Gonzales, Matthew J. ;
Omens, Jeff ;
Krummen, David E. ;
Narayan, Sanjiv ;
Kerckhoffs, Roy C. P. ;
McCulloch, Andrew D. .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2011, 107 (01) :147-155
[2]  
[Anonymous], 2002, Mathematical biology, Interdisciplinary applied mathematics
[3]   Approximation errors and model reduction with an application in optical diffusion tomography [J].
Arridge, SR ;
Kaipio, JP ;
Kolehmainen, V ;
Schweiger, M ;
Somersalo, E ;
Tarvainen, T ;
Vauhkonen, M .
INVERSE PROBLEMS, 2006, 22 (01) :175-195
[4]   Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology [J].
Camara, O. ;
Sermesant, M. ;
Lamata, P. ;
Wang, L. ;
Pop, M. ;
Relan, J. ;
De Craene, M. ;
Delingette, H. ;
Liu, H. ;
Niederer, S. ;
Pashaei, A. ;
Plank, G. ;
Romero, D. ;
Sebastian, R. ;
Wong, K. C. L. ;
Zhang, H. ;
Ayache, N. ;
Frangi, A. F. ;
Shi, P. ;
Smith, N. P. ;
Wright, G. A. .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2011, 107 (01) :122-133
[5]  
Camara O, 2010, LECT NOTES COMPUT SC, V6364, P281, DOI 10.1007/978-3-642-15835-3_29
[6]   Model-Based Imaging of Cardiac Apparent Conductivity and Local Conduction Velocity for Diagnosis and Planning of Therapy [J].
Chinchapatnam, Phani ;
Rhode, Kawal S. ;
Ginks, Matthew ;
Rinaldi, C. Aldo ;
Lambiase, Pier ;
Razavi, Reza ;
Arridge, Simon ;
Sermesant, Maxime .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (11) :1631-1642
[7]   Models of cardiac tissue electrophysiology: Progress, challenges and open questions [J].
Clayton, R. H. ;
Bernus, O. ;
Cherry, E. M. ;
Dierckx, H. ;
Fenton, F. H. ;
Mirabella, L. ;
Panfilov, A. V. ;
Sachse, F. B. ;
Seemann, G. ;
Zhang, H. .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2011, 104 (1-3) :22-48
[8]   WAVE-FRONT PROPAGATION IN AN ACTIVATION MODEL OF THE ANISOTROPIC CARDIAC TISSUE - ASYMPTOTIC ANALYSIS AND NUMERICAL SIMULATIONS [J].
COLLI-FRANZONE, P ;
GUERRI, L ;
ROVIDA, S .
JOURNAL OF MATHEMATICAL BIOLOGY, 1990, 28 (02) :121-176
[9]   Integrated electroanatomic mapping with three-dimensional computed tomographic images for real-time guided ablations [J].
Dong, J ;
Calkins, H ;
Solomon, SB ;
Lai, SH ;
Dalal, D ;
Lardo, A ;
Brem, E ;
Preiss, A ;
Berger, RD ;
Halperin, H ;
Dickfeld, T .
CIRCULATION, 2006, 113 (02) :186-194
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306