Cdc7 kinase mediates Claspin phosphorylation in DNA replication checkpoint

被引:77
作者
Kim, J. M. [1 ]
Kakusho, N. [1 ]
Yamada, M. [1 ]
Kanoh, Y. [1 ]
Takemoto, N. [2 ]
Masai, H. [1 ]
机构
[1] Tokyo Metropolitan Inst Med Sci, Genome Dynam Project, Bunkyo Ku, Tokyo 1138613, Japan
[2] Tokyo Metropolitan Inst Med Sci, Cytokine Project, Bunkyo Ku, Tokyo 1138613, Japan
关键词
Cdc7; DNA replication checkpoint; hydroxyurea; Chk1;
D O I
10.1038/sj.onc.1210994
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cdc7 kinase is evolutionarily conserved and is involved in initiation and progression of DNA replication. However, roles of Cdc7 in checkpoint responses remain largely unknown. In this study, we show that deletion of the Cdc7 genes in mouse embryonic stem (ES) cells abrogates hydroxyurea (HU)- or UV-induced activation of Chk1. HU-induced Chk1 activation is also impaired in human cancer cell lines in which Cdc7 is depleted by siRNA, and Cdc7-depleted cells are more sensitive to HU treatment. In contrast, ATR and Rad17 are relocated to chromatin in these cells following HU treatment, indicating that stalled DNA replication forks are detected normally. Cdc7-depleted cells exhibit defects in chromatin association and phosphorylation of Claspin, suggesting that Cdc7 exerts its effect at least partially through Claspin. Consistent with this prediction, Cdc7 interacts with and phosphorylates Claspin. We propose that Cdc7 is required for activation of the ATR-Chk1 checkpoint pathway through regulation of Cl aspin.
引用
收藏
页码:3475 / 3482
页数:8
相关论文
共 51 条
[1]   Cell cycle checkpoint signaling through the ATM and ATR kinases [J].
Abraham, RT .
GENES & DEVELOPMENT, 2001, 15 (17) :2177-2196
[2]   Mrc1 transduces signals of DNA replication stress to activate Rad53 [J].
Alcasabas, AA ;
Osborn, AJ ;
Bachant, J ;
Hu, FH ;
Werler, PJH ;
Bousset, K ;
Furuya, K ;
Diffley, JFX ;
Carr, AM ;
Elledge, SJ .
NATURE CELL BIOLOGY, 2001, 3 (11) :958-965
[3]   ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses [J].
Bao, SD ;
Tibbetts, RS ;
Brumbaugh, KM ;
Fang, YN ;
Richardson, DA ;
Ali, A ;
Chen, SM ;
Abraham, RT ;
Wang, XF .
NATURE, 2001, 411 (6840) :969-974
[4]   Chk1 and Chk2 kinases in checkpoint control and cancer [J].
Bartek, J ;
Lukas, J .
CANCER CELL, 2003, 3 (05) :421-429
[5]   Cell cycle regulation of Dfp1, an activator of the Hsk1 protein kinase [J].
Brown, GW ;
Kelly, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8443-8448
[6]   Chk1 in the DNA damage response: conserved roles from yeasts to mammals [J].
Chen, YH ;
Sanchez, Y .
DNA REPAIR, 2004, 3 (8-9) :1025-1032
[7]   Human claspin is required for replication checkpoint control [J].
Christiano, C ;
Chini, S ;
Chen, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (32) :30057-30062
[8]   Cleavage of claspin by caspase-7 during apoptosis inhibits the Chk1 pathway [J].
Clarke, CAL ;
Bennett, LN ;
Clarke, PR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (42) :35337-35345
[9]   Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases [J].
Cortez, D ;
Glick, G ;
Elledge, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (27) :10078-10083
[10]   An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication [J].
Costanzo, V ;
Shechter, D ;
Lupardus, PJ ;
Cimprich, KA ;
Gottesman, M ;
Gautier, J .
MOLECULAR CELL, 2003, 11 (01) :203-213